Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Frank Kanziora x
  • Refine by Access: all x
Clear All Modify Search
Open access

Barry Ting Sheen Kweh, Jin W. Tee, F. Cumhur Oner, Klaus J. Schnake, Emiliano N. Vialle, Frank Kanziora, Shanmuganathan Rajasekaran, Marcel Dvorak, Jens R. Chapman, Lorin M. Benneker, Gregory Schroeder, and Alexander R. Vaccaro

OBJECTIVE

The purpose of this study was to describe the genesis of the AO Spine Sacral and Pelvic Classification System in the context of historical sacral and pelvic grading systems.

METHODS

A systematic search of MEDLINE, EMBASE, Google Scholar, and Cochrane databases was performed consistent with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to identify all existing sacral and pelvic fracture classification systems.

RESULTS

A total of 49 articles were included in this review, comprising 23 pelvic classification systems and 17 sacral grading schemes. The AO Spine Sacral and Pelvic Classification System represents both the evolutionary product of these historical systems and a reinvention of classic concepts in 5 ways. First, the classification introduces fracture types in a graduated order of biomechanical stability while also taking into consideration the neurological status of patients. Second, the traditional belief that Denis central zone III fractures have the highest rate of neurological deficit is not supported because this subgroup often includes a broad spectrum of injuries ranging from a benign sagittally oriented undisplaced fracture to an unstable “U-type” fracture. Third, the 1990 Isler lumbosacral system is adopted in its original format to divide injuries based on their likelihood of affecting posterior pelvic or spinopelvic stability. Fourth, new discrete fracture subtypes are introduced and the importance of bilateral injuries is acknowledged. Last, this is the first integrated sacral and pelvic classification to date.

CONCLUSIONS

The AO Spine Sacral and Pelvic Classification is a universally applicable system that redefines and reorders historical fracture morphologies into a rational hierarchy. This is the first classification to simultaneously address the biomechanical stability of the posterior pelvic complex and spinopelvic stability, while also taking into consideration neurological status. Further high-quality controlled trials are required prior to the inclusion of this novel classification within a validated scoring system to guide the management of sacral and pelvic injuries.

Open access

Barry Ting Sheen Kweh, Jin Wee Tee, Sander Muijs, F. Cumhur Oner, Klaus John Schnake, Lorin Michael Benneker, Emiliano Neves Vialle, Frank Kanziora, Shanmuganathan Rajasekaran, Gregory Schroeder, Alexander R. Vaccaro, and

OBJECTIVE

Optimal management of A3 and A4 cervical spine fractures, as defined by the AO Spine Subaxial Injury Classification System, remains controversial. The objectives of this study were to determine whether significant management variations exist with respect to 1) fracture location across the upper, middle, and lower subaxial cervical spine and 2) geographic region, experience, or specialty.

METHODS

A survey was internationally distributed to 272 AO Spine members across six geographic regions (North America, South America, Europe, Africa, Asia, and the Middle East). Participants’ management of A3 and A4 subaxial cervical fractures across cervical regions was assessed in four clinical scenarios. Key characteristics considered in the vignettes included degree of neurological deficit, pain severity, cervical spine stability, presence of comorbidities, and fitness for surgery. Respondents were also directly asked about their preferences for operative management and misalignment acceptance across the subaxial cervical spine.

RESULTS

In total, 155 (57.0%) participants completed the survey. Pooled analysis demonstrated that surgeons were more likely to offer operative intervention for both A3 (p < 0.001) and A4 (p < 0.001) fractures located at the cervicothoracic junction compared with fractures at the upper or middle subaxial cervical regions. There were no significant variations in management for junctional incomplete (p = 0.116) or complete (p = 0.342) burst fractures between geographic regions. Surgeons with more than 10 years of experience were more likely to operatively manage A3 (p < 0.001) and A4 (p < 0.001) fractures than their younger counterparts. Neurosurgeons were more likely to offer surgical stabilization of A3 (p < 0.001) and A4 (p < 0.001) fractures than their orthopedic colleagues. Clinicians from both specialties agreed regarding their preference for fixation of lower junctional A3 (p = 0.866) and A4 (p = 0.368) fractures. Overall, surgical fixation was recommended more often for A4 than A3 fractures in all four scenarios (p < 0.001).

CONCLUSIONS

The subaxial cervical spine should not be considered a single unified entity. Both A3 and A4 fracture subtypes were more likely to be surgically managed at the cervicothoracic junction than the upper or middle subaxial cervical regions. The authors also determined that treatment strategies for A3 and A4 subaxial cervical spine fractures varied significantly, with the latter demonstrating a greater likelihood of operative management. These findings should be reflected in future subaxial cervical spine trauma algorithms.