Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Francisco Soldado x
  • All content x
Clear All Modify Search
Restricted access

Jayme A. Bertelli, Neehar Patel, Francisco Soldado, and Elisa Cristiana Winkelmann Duarte

OBJECTIVE

The purpose of this study was to describe the anatomy of donor and recipient median nerve motor branches for nerve transfer surgery within the cubital fossa.

METHODS

Bilateral upper limbs of 10 fresh cadavers were dissected after dyed latex was injected into the axillary artery.

RESULTS

In the cubital fossa, the first branch was always the proximal branch of the pronator teres (PPT), whereas the last one was the anterior interosseous nerve (AIN) and the distal motor branch of the flexor digitorum superficialis (DFDS) on a consistent basis. The PT muscle was also innervated by a distal branch (DPT), which emerged from the anterior side of the median nerve and provided innervation to its deep head. The palmaris longus (PL) motor branch was always the second branch after the PPT, emerging as a single branch together with the flexor carpi radialis (FCR) or the proximal branch of the flexor digitorum superficialis. The FCR motor branch was prone to variations. It originated proximally with the PL branch (35%) or distally with the AIN (35%), and less frequently from the DPT. In 40% of dissections, the FDS was innervated by a single branch (i.e., the DFDS) originating close to the AIN. In 60% of cases, a proximal branch originated together with the PL or FCR. The AIN emerged from the posterior side of the median nerve and had a diameter of 2.3 mm, twice that of other branches. When dissections were performed between the PT and FCR muscles at the FDS arcade, we observed the AIN lying lateral and the DFDS medial to the median nerve. After crossing the FDS arcade, the AIN divided into: 1) a lateral branch to the flexor pollicis longus (FPL), which bifurcated to reach the anterior and posterior surfaces of the FPL; 2) a medial branch, which bifurcated to reach the flexor digitorum profundus (FDP); and 3) a long middle branch to the pronator quadratus. The average numbers of myelinated fibers within each median nerve branch were as follows (values expressed as the mean ± SD): PPT 646 ± 249; DPT 599 ± 150; PL 259 ± 105; FCR 541 ± 199; proximal FDS 435 ± 158; DFDS 376 ± 150; FPL 480 ± 309; first branch to the FDP 397 ± 12; and second branch to the FDP 369 ± 33.

CONCLUSIONS

The median nerve's branching pattern in the cubital fossa is predictable. The most important variation involves the FCR motor branch. These anatomical findings aid during nerve transfer surgery to restore function when paralysis results from injury to the radial or median nerves, brachial plexus, or spinal cord.

Restricted access

Saud N. Al-Shanafey, Cesar G. Fontecha, Marius Aguirre Canyadell, Francisco C. Soldado, Alejandro A. Rojo, Xavier J. Conesa, Nuria T. Toran, Vicenç M. Ibanez, and Jose L. Peiro

Object

The authors undertook this study to assess the effect of preterm delivery with respect to neural protection in a congenital myelomeningocele (MMC) mouse model.

Methods

After confirmation of pregnancy in 15 female mice, a congenital MMC model was produced by administration of retinoic acid on the 7th day of gestation. The pregnant mice underwent cesarean sections on Days 15 (n = 5, Group E15), 17 (n = 5, Group E17), and 19 (n = 5, Group E19). Histological analyses were conducted on the lumbar defect and on the craniocervical junction in all fetuses with MMC.

Results

Fetuses in Group E19 showed the most significant injury to neural tissue of the spinal cord at the MMC area followed by those in Group E17, with Group E15 being the least affected. All groups exhibited a degree of Chiari malformation; Group E19 was the most affected, followed by Group E17, and Group E15 was the least affected.

Conclusions

Development of both Chiari malformation and exposed spinal cord injury are progressive during gestation. Preterm delivery in this mouse model of congenital MMC may minimize the degree of injury to the spinal cord neural tissue and the degree of Chiari malformation.