Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Florence M. Hofman x
Clear All Modify Search
Restricted access

Christiana Charalambous, Florence M. Hofman and Thomas C. Chen

Object. Glioblastomas multiforme (GBMs) are hypervascular tumors characterized by endothelial cell (EC) proliferation. There is increasing evidence that ECs that infiltrate systemic tumors are different from normal blood vessel cells; whether this difference is seen in the central nervous system between GBM and normal brain tissue is not known. The goal of this investigation was to characterize and compare the functional and phenotypic properties of GBM-associated ECs and normal brain ECs.

Methods. Human ECs were isolated from fresh tissue specimens, purified using flow cytometry, and characterized by immunostaining. Proliferation was measured by determining bromodeoxyuridine incorporation and Ki-67 staining, and by performing the monotetrazolium assay. The migration rate of the cells was determined using the modified Boyden chamber technique. Apoptosis was evaluated by performing the TUNEL assay, cell death enzyme-linked immunosorbent assay (ELISA), and annexin V staining. Growth factor production was analyzed using the ELISA technique.

The brain tumor ECs differed from normal brain ECs morphologically and by their expression and distribution of specific markers (that is, vascular endothelial cadherin [VE-cadherin] and CD31). Functional differences between the two cell populations were also evident. The brain tumor ECs proliferated more slowly and underwent less apoptosis than normal brain ECs; however, the tumor ECs migrated faster than the normal ECs. The normal ECs were sensitive to growth factors such as vascular endothelial growth factor (VEGF) and endothelin-1 (ET-1), whereas the tumor ECs were not. In addition, the brain tumor ECs constitutively produced higher levels of ET-1 and VEGF, compared with the normal ECs.

Conclusions. The data demonstrated that ECs derived from normal brain and from GBMs have significant phenotypic and functional distinctions. Further characterization of brain tumor ECs is essential for efficient antiangiogenic treatment of gliomas.

Full access

Christiana Charalambous, Thomas C. Chen and Florence M. Hofman

✓ Glioblastomas multiforme (GBMs) are highly vascular brain tumors characterized by abnormal vessel structures in vivo. This finding supports the theory that glioma-associated endothelial cells (ECs) have intrinsically different properties from ECs in normal human brain. Therefore, identification of the functional and phenotypic characteristics of tumor-associated ECs is essential for designing a rational antiangiogenic therapy. The GBM-associated ECs have a large, flat, and veil-like appearance, in contrast to normal ones, which are small and plump. Although the tumor ECs have the typical markers, they proliferate more slowly than these cell types in normal brain. The GBM-associated ECs are resistant to cytotoxic drugs, and they undergo less apoptosis than control cells. Also, GBM-associated ECs migrate faster than controls and constitutively produce high levels of growth factors such as endothelin-1, interleukin-8, and vascular endothelial growth factor. An understanding of these unique characteristics of glioma-associated ECs is important for the development of novel antiangiogenic agents that specifically target tumor-associated ECs in gliomas.

Restricted access

Mononuclear lymphoid populations infiltrating the microenvironment of primary CNS tumors

Characterization of cell subsets with monoclonal antibodies

Roger I. von Hanwehr, Florence M. Hofman, Clive R. Taylor and Michael L. J. Apuzzo

✓ Mononuclear cell infiltrates are found to varying degrees in 30% to 60% of primary human central nervous system (CNS) gliomas. To explore the immunological importance of this, six operative glial tumors, eight non-glial tumors, and three normal brain specimens were studied. Utilizing an immunoperoxidase method, the authors examined frozen sections for lymphoid infiltrates expressing suppressor/cytotoxic and helper phenotypes, as identified with the Leu-1,2,3 monoclonal antibodies. Four of six gliomas demonstrated lymphoid infiltrates: three tumors exhibited a predominant suppressor/cytotoxic cell phenotype and the fourth showed mixed staining of suppressor/cytotoxic and helper cell phenotypes. Varying degrees of lymphoid infiltration characterized four out of eight non-glial primary CNS tumors. Two cases exhibited a prevalence of suppressor/cytotoxic phenotype cells, while two cases demonstrated a more heterogeneous pattern of phenotype expression. Normal brain sections revealed little or no evidence of mononuclear infiltrates. The immunobiological significance of these findings is discussed in the context of tumor-host interaction within the CNS.

Restricted access

John Schneider, Florence M. Hofman, Michael L. J. Apuzzo and David R. Hinton

✓ Cytokines are important regulatory proteins controlling growth and differentiation of normal and malignant glial cells. Astrocytes and microglial cells produce and respond to many of the same cytokines employed by cells of the immune system. The authors have analyzed 15 histologically confirmed malignant glial neoplasms for the presence of infiltrating lymphocytes, macrophages, cytokines, and other immunoregulatory molecules using a panel of specific monoclonal and polyclonal antibodies on frozen-tissue sections. All neoplasms showed focal T-cell infiltration with CD8 cells predominating. Infiltration of activated macrophages (positive for CD11c, class II, and interleukin-2 receptor) was marked in all tumors. Within the neoplasm, tumor necrosis factor-α (TNF-α)- and interleukin (IL)-6-positive macrophages were prominent in five cases, while the tumor cells themselves were only weakly positive. In the other 10 cases, the numerous infiltrating macrophages were only rarely immunoreactive for TNF-α or IL-6. Transforming growth factor-β (TGF-β) immunoreactivity was most prominent in those tumors with little TNF-α-positive macrophage infiltration, although intratumoral variability was present. This study suggests that, in malignant gliomas, the cytokines TNF-α and IL-6, although weakly present in neoplastic cells, are most prominent in infiltrating macrophages and in those regions of the tumors that show little immunoreactivity for TGF-β. The important interactions among neoplastic, reactive glial, and inflammatory cells, which regulate tumor growth, are likely to be in part mediated through these molecules.

Restricted access

Weijun Wang, Alex Ghandi, Leonard Liebes, Stan G. Louie, Florence M. Hofman, Axel H. Schönthal and Thomas C. Chen

Object

Irinotecan (CPT-11), a topoisomerase I inhibitor, is a cytotoxic agent with activity against malignant gliomas and other tumors. After systemic delivery, CPT-11 is converted to its active metabolite, SN-38, which displays significantly higher cytotoxic potency. However, the achievement of therapeutically effective plasma levels of CPT-11 and SN-38 is seriously complicated by variables that affect drug metabolism in the liver. Thus the capacity of CPT-11 to be converted to the active SN38 intratumorally in gliomas was addressed.

Methods

For in vitro studies, 2 glioma cell lines, U87 and U251, were tested to determine the cytotoxic effects of CPT-11 and SN-38 in a dose-dependent manner. In vivo studies were performed by implanting U87 intracranially into athymic/nude mice. For a period of 2 weeks, SN-38, CPT-11, or vehicle was administered intratumorally by means of an osmotic minipump. One series of experiments measured the presence of SN-38 or CPT-11 in the tumor and surrounding brain tissues after 2 weeks' exposure to the drug. In a second series of experiments, after 2 weeks' exposure to the drug, the animals were maintained, in the absence of drug, until death. The survival curves were then calculated.

Results

The results show that the animals that had CPT-11 delivered intratumorally by the minipump expressed SN-38 in vivo. Furthermore, both CPT-11 and SN-38 accumulated at higher levels in tumor tissues compared with uninvolved brain. Intratumoral delivery of CPT-11 or SN-38 extended the average survival time of tumor-bearing animals from 22 days to 46 and 65 days, respectively.

Conclusions

These results demonstrate that intratumorally administered CPT-11 can be effectively converted to SN-38 and this method of drug delivery is effective in extending the survival time of animals bearing malignant gliomas.

Free access

Encouse B. Golden, Hee-Yeon Cho, Ardeshir Jahanian, Florence M. Hofman, Stan G. Louie, Axel H. Schönthal and Thomas C. Chen

Object

In a recent clinical trial, patients with newly diagnosed glioblastoma multiforme benefited from chloroquine (CQ) in combination with conventional therapy (resection, temozolomide [TMZ], and radiation therapy). In the present study, the authors report the mechanism by which CQ enhances the therapeutic efficacy of TMZ to aid future studies aimed at improving this therapeutic regimen.

Methods

Using in vitro and in vivo experiments, the authors determined the mechanism by which CQ enhances TMZ cytotoxicity. They focused on the inhibition-of-autophagy mechanism of CQ by knockdown of the autophagy-associated proteins or treatment with autophagy inhibitors. This mechanism was tested using an in vivo model with subcutaneously implanted U87MG tumors from mice treated with CQ in combination with TMZ.

Results

Knockdown of the autophagy-associated proteins (GRP78 and Beclin) or treatment with the autophagy inhibitor, 3-methyl adenine (3-MA), blocked autophagosome formation and reduced CQ cytotoxicity, suggesting that autophagosome accumulation precedes CQ-induced cell death. In contrast, blocking autophagosome formation with knockdown of GRP78 or treatment with 3-MA enhanced TMZ cytotoxicity, suggesting that the autophagy pathway protects from TMZ-induced cytotoxicity. CQ in combination with TMZ significantly increased the amounts of LC3B-II (a marker for autophagosome levels), CHOP/GADD-153, and cleaved PARP (a marker for apoptosis) over those with untreated or individual drug-treated glioma cells. These molecular mechanisms seemed to take place in vivo as well. Subcutaneously implanted U87MG tumors from mice treated with CQ in combination with TMZ displayed higher levels of CHOP/GADD-153 than did untreated or individual drug-treated tumors.

Conclusions

Taken together, these results demonstrate that CQ blocks autophagy and triggers endoplasmic reticulum stress, thereby increasing the chemosensitivity of glioma cells to TMZ.

Free access

Encouse B. Golden, Hee-Yeon Cho, Florence M. Hofman, Stan G. Louie, Axel H. Schönthal and Thomas C. Chen

OBJECT

Chloroquine (CQ) is a quinoline-based drug widely used for the prevention and treatment of malaria. More recent studies have provided evidence that this drug may also harbor antitumor properties, whereby CQ possesses the ability to accumulate in lysosomes and blocks the cellular process of autophagy. Therefore, the authors of this study set out to investigate whether CQ analogs, in particular clinically established antimalaria drugs, would also be able to exert antitumor properties, with a specific focus on glioma cells.

METHODS

Toward this goal, the authors treated different glioma cell lines with quinine (QN), quinacrine (QNX), mefloquine (MFQ), and hydroxychloroquine (HCQ) and investigated endoplasmic reticulum (ER) stress–induced cell death, autophagy, and cell death.

RESULTS

All agents blocked cellular autophagy and exerted cytotoxic effects on drug-sensitive and drug-resistant glioma cells with varying degrees of potency (QNX > MFQ > HCQ > CQ > QN). Furthermore, all quinoline-based drugs killed glioma cells that were highly resistant to temozolomide (TMZ), the current standard of care for patients with glioma. The cytotoxic mechanism involved the induction of apoptosis and ER stress, as indicated by poly(ADP-ribose) polymerase (PARP) cleavage and CHOP/GADD153. The induction of ER stress and resulting apoptosis could be confirmed in the in vivo setting, in which tumor tissues from animals treated with quinoline-based drugs showed increased expression of CHOP/GADD153, along with elevated TUNEL staining, a measure of apoptosis.

CONCLUSIONS

Thus, the antimalarial compounds investigated in this study hold promise as a novel class of autophagy inhibitors for the treatment of newly diagnosed TMZ-sensitive and recurrent TMZ-resistant gliomas.

Restricted access

Weijun Wang, Hee-Yeon Cho, Rachel Rosenstein-Sisson, Nagore I. Marín Ramos, Ryan Price, Kyle Hurth, Axel H. Schönthal, Florence M. Hofman and Thomas C. Chen

OBJECTIVE

Glioblastoma (GBM) is the most prevalent and the most aggressive of primary brain tumors. There is currently no effective treatment for this tumor. The proteasome inhibitor bortezomib is effective for a variety of tumors, but not for GBM. The authors' goal was to demonstrate that bortezomib can be effective in the orthotopic GBM murine model if the appropriate method of drug delivery is used. In this study the Alzet mini-osmotic pump was used to bring the drug directly to the tumor in the brain, circumventing the blood-brain barrier; thus making bortezomib an effective treatment for GBM.

METHODS

The 2 human glioma cell lines, U87 and U251, were labeled with luciferase and used in the subcutaneous and intracranial in vivo tumor models. Glioma cells were implanted subcutaneously into the right flank, or intracranially into the frontal cortex of athymic nude mice. Mice bearing intracranial glioma tumors were implanted with an Alzet mini-osmotic pump containing different doses of bortezomib. The Alzet pumps were introduced directly into the tumor bed in the brain. Survival was documented for mice with intracranial tumors.

RESULTS

Glioma cells were sensitive to bortezomib at nanomolar quantities in vitro. In the subcutaneous in vivo xenograft tumor model, bortezomib given intravenously was effective in reducing tumor progression. However, in the intracranial glioma model, bortezomib given systemically did not affect survival. By sharp contrast, animals treated with bortezomib intracranially at the tumor site exhibited significantly increased survival.

CONCLUSIONS

Bypassing the blood-brain barrier by using the osmotic pump resulted in an increase in the efficacy of bortezomib for the treatment of intracranial tumors. Thus, the intratumoral administration of bortezomib into the cranial cavity is an effective approach for glioma therapy.

Restricted access

Vinay Gupta, Yuzhuang S. Su, Christian G. Samuelson, Leonard F. Liebes, Marc C. Chamberlain, Florence M. Hofman, Axel H. Schönthal and Thomas C. Chen

Object

There is currently no effective chemotherapy for meningiomas. Although most meningiomas are treated surgically, atypical or malignant meningiomas and surgically inaccessible meningiomas may not be removed completely. The authors have investigated the effects of the topoisomerase I inhibitor irinotecan (CPT-11) on primary meningioma cultures and a malignant meningioma cell line in vitro and in vivo.

Methods

The effects of irinotecan on cellular proliferation in primary meningioma cultures and the IOMM-Lee malignant meningioma cell line were measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide assay and flow cytometry. Apoptosis following drug treatment was evaluated by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling and the DNA laddering assays. The effects of irinotecan in vivo on a meningioma model were determined with a subcutaneous murine tumor model using the IOMM-Lee cell line.

Irinotecan induced a dose-dependent antiproliferative effect with subsequent apoptosis in the primary meningioma cultures (at doses up to 100 μM) as well as in the IOMM-Lee human malignant meningioma cell line (at doses up to 20 μM) irinotecan. In the animal model, irinotecan treatment led to a statistically significant decrease in tumor growth that was accompanied by a decrease in Bcl-2 and survivin levels and an increase in apoptotic cell death.

Conclusions

Irinotecan demonstrated growth-inhibitory effects in meningiomas both in vitro and in vivo. Irinotecan was much more effective against the malignant meningioma cell line than against primary meningioma cultures. Therefore, this drug may have an important therapeutic role in the treatment of atypical or malignant meningiomas and should be evaluated further for this purpose.

Restricted access

Weijun Wang, Steve Swenson, Hee-Yeon Cho, Florence M. Hofman, Axel H. Schönthal and Thomas C. Chen

OBJECTIVE

Many pharmaceutical agents are highly potent but are unable to exert therapeutic activity against disorders of the central nervous system (CNS), because the blood-brain barrier (BBB) impedes their brain entry. One such agent is bortezomib (BZM), a proteasome inhibitor that is approved for the treatment of multiple myeloma. Preclinical studies established that BZM can be effective against glioblastoma (GBM), but only when the drug is delivered via catheter directly into the brain lesion, not after intravenous systemic delivery. The authors therefore explored alternative options of BZM delivery to the brain that would avoid invasive procedures and minimize systemic exposure.

METHODS

Using mouse and rat GBM models, the authors applied intranasal drug delivery, where they co-administered BZM together with NEO100, a highly purified, GMP-manufactured version of perillyl alcohol that is used in clinical trials for intranasal therapy of GBM patients.

RESULTS

The authors found that intranasal delivery of BZM combined with NEO100 significantly prolonged survival of tumor-bearing animals over those that received vehicle alone and also over those that received BZM alone or NEO100 alone. Moreover, BZM concentrations in the brain were higher after intranasal co-delivery with NEO100 as compared to delivery in the absence of NEO100.

CONCLUSIONS

This study demonstrates that intranasal delivery with a NEO100-based formulation enables noninvasive, therapeutically effective brain delivery of a pharmaceutical agent that otherwise does not efficiently cross the BBB.