Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Fernando Cendes x
Clear All Modify Search
Restricted access

Mark C. Preul, Richard Leblanc, Fernando Cendes, Francois Dubeau, David Reutens, Roberto Spreafico, Giorgio Battaglia, Massimo Avoli, Pierre Langevin, Douglas L. Arnold and Jean-Guy Villemure

✓ Cerebral dysgenesis is a subject of interest because of its relationship to cerebral development and dysfunction and to epilepsy. The authors present a detailed study of a 16-year-old boy who underwent surgery for a severe seizure disorder. This patient had dysgenesis of the right hemisphere, which was composed of a giant central frontoparietal nodular gray matter heterotopia with overlying large islands of cortical dysplasia around a displaced central fissure. Exceptional insight into the function, biochemistry, electrophysiology, and histological structure of this lesion was obtained from neurological studies that revealed complementary information: magnetic resonance (MR) imaging, [18]fluoro-2-deoxy-d-glucose positron emission tomography (PET), functional PET scanning, proton MR spectroscopic (1H-MRS) imaging, intraoperative cortical mapping and electrocorticography, in vitro electrophysiology, and immunocytochemistry. These studies demonstrated compensatory cortical reorganization and showed that large areas of heterotopia and cortical dysplasia in the central area may retain normal motor and sensory function despite strikingly altered cytoarchitectonic organization and neuronal metabolism. Such lesions necessitate appropriate functional imaging studies prior to surgery and cortical mapping to avoid creating neurological deficits. Integrated studies, such as PET, 1H-MRS imaging, cortical mapping, immunocytochemistry, and electrophysiology may provide information on the function of developmental disorders of cerebral organization.

Free access

Leonardo Giacomini, Joao Paulo Sant Ana de Souza, Cleiton Formentin, Brunno Machado de Campos, Alexandre B. Todeschini, Evandro de Oliveira, Helder Tedeschi, Andrei Fernandes Joaquim, Fernando Cendes and Enrico Ghizoni

OBJECTIVE

Mesial temporal lobe epilepsy (MTLE) is the most common type of focal epilepsy in adolescents and adults, and in 65% of cases, it is related to hippocampal sclerosis (HS). Selective surgical approaches to the treatment of MTLE have as their main goal resection of the amygdala and hippocampus with minimal damage to the neocortex, temporal stem, and optic radiations (ORs). The object of this study was to evaluate late postoperative imaging findings on the temporal lobe from a structural point of view.

METHODS

The authors conducted a retrospective evaluation of all patients with refractory MTLE who had undergone transsylvian selective amygdalohippocampectomy (SAH) in the period from 2002 to 2015. A surgical group was compared to a control group (i.e., adults with refractory MTLE with an indication for surgical treatment of epilepsy but who did not undergo the surgical procedure). The inferior frontooccipital fasciculus (IFOF), uncinate fasciculus (UF), and ORs were evaluated on diffusion tensor imaging analysis. The temporal pole neocortex was evaluated using T2 relaxometry.

RESULTS

For the IFOF and UF, there was a decrease in anisotropy, voxels, and fibers in the surgical group compared with those in the control group (p < 0.001). An increase in relaxometry time in the surgical group compared to that in the control group (p < 0.001) was documented, suggesting gliosis and neuronal loss in the temporal pole.

CONCLUSIONS

SAH techniques do not seem to totally preserve the temporal stem or even spare the neocortex of the temporal pole. Therefore, although the transsylvian approaches have been considered to be anatomically selective, there is evidence that the temporal pole neocortex suffers structural damage and potentially functional damage with these approaches.

Restricted access

João Paulo Sant Ana Santos de Souza, Gabriel Ayub, Mateus Nogueira, Tamires Zanao, Tátila Martins Lopes, Luciana Ramalho Pimentel-Silva, Vinicius Domene, Gabriel Marquez, Clarissa Lin Yasuda, Letícia Franceschet Ribeiro, Brunno M. Campos, José Vasconcellos, Fabio Rogerio, Andrei Fernandes Joaquim, Fernando Cendes, Helder Tedeschi and Enrico Ghizoni

OBJECTIVE

The objective of this study was to evaluate the efficacy and safety of a modified surgical approach for the treatment of temporal lobe epilepsy secondary to hippocampal sclerosis (HS). This modified approach, called temporopolar amygdalohippocampectomy (TP-AH), includes a transsylvian resection of the temporal pole and subsequent amygdalohippocampectomy utilizing the limen insula as an anatomical landmark.

METHODS

A total of 61 patients who were diagnosed with HS and underwent TP-AH between 2013 and 2017 were enrolled. Patients performed pre- and postoperative diffusion tensor imaging and were classified according to Engel’s scale for seizure control. To evaluate the functional preservation of the temporal stem white-matter fiber tracts, the authors analyzed postoperative Humphrey perimetries and pre- and postoperative neurocognitive performance (Rey Auditory Verbal Learning Test [RAVLT], Weschler Memory Scale–Revised [WMS-R], intelligence quotient [IQ], Boston Naming Test [BNT], and semantic and phonemic fluency). Demographic data and surgical complications were also recorded and described.

RESULTS

After a median follow-up of 36 ± 16 months, 46 patients (75.4%) achieved Engel class I, of whom 37 (60.6%) were Engel class IA. No significant changes in either the inferior frontooccipital fasciculus and optic radiation tractography were observed postoperatively for both left- and right-side surgeries. Reliable perimetry was obtained in 40 patients (65.6%), of whom 27 (67.5%) did not present any visual field defects (VFDs) attributable to surgery, while 12 patients (30%) presented with quadrant VFD, and 1 patient (2.5%) presented with hemifield VFD. Despite a significant decline in verbal memory (p = 0.007 for WMS-R, p = 0.02 for RAVLT recognition), there were significant improvements in both IQ (p < 0.001) and visual memory (p = 0.007). Semantic and phonemic fluency, and scores on the BNT, did not change postoperatively.

CONCLUSIONS

TP-AH provided seizure control similar to historical temporal lobe approaches, with a tendency to preserve the temporal stem and a satisfactory incidence of VFD. Despite a significant decline in verbal memory, there were significant improvements in both IQ and visual memory, along with preservation of executive function. This approach can be considered a natural evolution of the selective transsylvian approach.