Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: F. Cumhur Öner x
  • Refine by Access: all x
Clear All Modify Search
Restricted access

Agnita Stadhouder, Constantinus F. M. Buckens, Herman R. Holtslag, and F. Cumhur Öner

Object

Valid outcome assessment tools specific for spinal trauma patients are necessary to establish the efficacy of different treatment options. So far, no validated specific outcome measures are available for this patient population. The purpose of this study was to assess the current state of outcome measurement in spinal trauma patients and to address the question of whether this group is adequately served by current disease-specific and generic health-related quality-of-life instruments.

Methods

A number of widely used outcome measures deemed most appropriate were reviewed, and their applicability to spinal trauma outcome discussed. An overview of recent movements in the theoretical foundations of outcome assessment, as it pertains to spinal trauma patients has been attempted, along with a discussion of domains important for spinal trauma.

Commonly used outcome measures that are recommended for use in trauma patients were reviewed from the perspective of spinal trauma. The authors further sought to select a number of spine trauma–relevant domains from the WHO's comprehensive International Classification of Functioning, Disability and Health (ICF) as a benchmark for assessing the content coverage of the commonly used outcome measurements reviewed.

Results

The study showed that there are no psychometrically validated outcome measurements for the spinal trauma population and there are no commonly used outcome measures that provide adequate content coverage for spinal trauma domains.

Conclusions

Spinal trauma patients are currently followed either as a subset of the polytrauma population in the acute and early postacute setting or as a subset of neurological injury in the long-term revalidation medicine setting.

Restricted access

Editorial

Spine trauma: the challenges in assessing outcomes

Michael G. Fehlings and Jefferson R. Wilson

Restricted access

Charlotte Y. Adegeest, Jort A. N. van Gent, Janneke M. Stolwijk-Swüste, Marcel W. M. Post, William P. Vandertop, F. Cumhur Öner, Wilco C. Peul, and Paula V. ter Wengel

OBJECTIVE

Secondary health conditions (SHCs) are long-term complications that frequently occur due to traumatic spinal cord injury (tSCI) and can negatively affect quality of life in this patient population. This study provides an overview of the associations between the severity and level of injury and the occurrence of SHCs in tSCI.

METHODS

A systematic search was conducted in PubMed and Embase that retrieved 44 studies on the influence of severity and/or level of injury on the occurrence of SHCs in the subacute and chronic phase of tSCI (from 3 months after trauma). The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed.

RESULTS

In the majority of studies, patients with motor-complete tSCI (American Spinal Injury Association [ASIA] Impairment Scale [AIS] grade A or B) had a significantly increased occurrence of SHCs in comparison to patients with motor-incomplete tSCI (AIS grade C or D), such as respiratory and urogenital complications, musculoskeletal disorders, pressure ulcers, and autonomic dysreflexia. In contrast, an increased prevalence of pain was seen in patients with motor-incomplete injuries. In addition, higher rates of pulmonary infections, spasticity, and autonomic dysreflexia were observed in patients with tetraplegia. Patients with paraplegia more commonly suffered from hypertension, venous thromboembolism, and pain.

CONCLUSIONS

This review suggests that patients with a motor-complete tSCI have an increased risk of developing SHCs during the subacute and chronic stage of tSCI in comparison with patients with motor-incomplete tSCI. Future studies should examine whether systematic monitoring during rehabilitation and the subacute and chronic phase in patients with motor-complete tSCI could lead to early detection and potential prevention of SHCs in this population.

Full access

Gregory D. Schroeder, Christopher K. Kepler, John D. Koerner, Jens R. Chapman, Carlo Bellabarba, F. Cumhur Oner, Max Reinhold, Marcel F. Dvorak, Bizhan Aarabi, Luiz Vialle, Michael G. Fehlings, Shanmuganathan Rajasekaran, Frank Kandziora, Klaus J. Schnake, and Alexander R. Vaccaro

OBJECT

The aim of this study was to determine if the ability of a surgeon to correctly classify A3 (burst fractures with a single endplate involved) and A4 (burst fractures with both endplates involved) fractures is affected by either the region or the experience of the surgeon.

METHODS

A survey was sent to 100 AOSpine members from all 6 AO regions of the world (North America, South America, Europe, Africa, Asia, and the Middle East) who had no prior knowledge of the new AOSpine Thoracolumbar Spine Injury Classification System. Respondents were asked to classify 25 cases, including 6 thoracolumbar burst fractures (A3 or A4). This study focuses on the effect of region and experience on surgeons’ ability to properly classify these 2 controversial fracture variants.

RESULTS

All 100 surveyed surgeons completed the survey, and no significant regional (p > 0.50) or experiential (p > 0.21) variability in the ability to correctly classify burst fractures was identified; however, surgeons from all regions and with all levels of experience were more likely to correctly classify A3 fractures than A4 fractures (p < 0.01). Further analysis demonstrated that no region predisposed surgeons to increasing their assessment of severity of burst fractures.

CONCLUSIONS

A3 and A4 fractures are the most difficult 2 fractures to correctly classify, but this is not affected by the region or experience of the surgeon; therefore, regional variations in the treatment of thoracolumbar burst fractures (A3 and A4) is not due to differing radiographic interpretation of the fractures.

Open access

Barry Ting Sheen Kweh, Jin Wee Tee, Sander Muijs, F. Cumhur Oner, Klaus John Schnake, Lorin Michael Benneker, Emiliano Neves Vialle, Frank Kanziora, Shanmuganathan Rajasekaran, Gregory Schroeder, Alexander R. Vaccaro, and the AO Spine Subaxial Injury Classification System Validation Group

OBJECTIVE

Optimal management of A3 and A4 cervical spine fractures, as defined by the AO Spine Subaxial Injury Classification System, remains controversial. The objectives of this study were to determine whether significant management variations exist with respect to 1) fracture location across the upper, middle, and lower subaxial cervical spine and 2) geographic region, experience, or specialty.

METHODS

A survey was internationally distributed to 272 AO Spine members across six geographic regions (North America, South America, Europe, Africa, Asia, and the Middle East). Participants’ management of A3 and A4 subaxial cervical fractures across cervical regions was assessed in four clinical scenarios. Key characteristics considered in the vignettes included degree of neurological deficit, pain severity, cervical spine stability, presence of comorbidities, and fitness for surgery. Respondents were also directly asked about their preferences for operative management and misalignment acceptance across the subaxial cervical spine.

RESULTS

In total, 155 (57.0%) participants completed the survey. Pooled analysis demonstrated that surgeons were more likely to offer operative intervention for both A3 (p < 0.001) and A4 (p < 0.001) fractures located at the cervicothoracic junction compared with fractures at the upper or middle subaxial cervical regions. There were no significant variations in management for junctional incomplete (p = 0.116) or complete (p = 0.342) burst fractures between geographic regions. Surgeons with more than 10 years of experience were more likely to operatively manage A3 (p < 0.001) and A4 (p < 0.001) fractures than their younger counterparts. Neurosurgeons were more likely to offer surgical stabilization of A3 (p < 0.001) and A4 (p < 0.001) fractures than their orthopedic colleagues. Clinicians from both specialties agreed regarding their preference for fixation of lower junctional A3 (p = 0.866) and A4 (p = 0.368) fractures. Overall, surgical fixation was recommended more often for A4 than A3 fractures in all four scenarios (p < 0.001).

CONCLUSIONS

The subaxial cervical spine should not be considered a single unified entity. Both A3 and A4 fracture subtypes were more likely to be surgically managed at the cervicothoracic junction than the upper or middle subaxial cervical regions. The authors also determined that treatment strategies for A3 and A4 subaxial cervical spine fractures varied significantly, with the latter demonstrating a greater likelihood of operative management. These findings should be reflected in future subaxial cervical spine trauma algorithms.