Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Evangelos Drosos x
Clear All Modify Search
Restricted access

Spyridon Komaitis, Georgios P. Skandalakis, Aristotelis V. Kalyvas, Evangelos Drosos, Evgenia Lani, John Emelifeonwu, Faidon Liakos, Maria Piagkou, Theodosis Kalamatianos, George Stranjalis and Christos Koutsarnakis

OBJECTIVE

The aim of this study was to investigate the anatomical consistency, morphology, axonal connectivity, and correlative topography of the dorsal component of the superior longitudinal fasciculus (SLF-I) since the current literature is limited and ambiguous.

METHODS

Fifteen normal, adult, formalin-fixed cerebral hemispheres were studied through a medial to lateral fiber microdissection technique. In 5 specimens, the authors performed stepwise focused dissections of the lateral cerebral aspect to delineate the correlative anatomy between the SLF-I and the other two SLF subcomponents, namely the SLF-II and SLF-III.

RESULTS

The SLF-I was readily identified as a distinct fiber tract running within the cingulate or paracingulate gyrus and connecting the anterior cingulate cortex, the medial aspect of the superior frontal gyrus, the pre–supplementary motor area (pre-SMA), the SMA proper, the paracentral lobule, and the precuneus. With regard to the morphology of the SLF-I, two discrete segments were consistently recorded: an anterior and a posterior segment. A clear cleavage plane could be developed between the SLF-I and the cingulum, thus proving their structural integrity. Interestingly, no anatomical connection was revealed between the SLF-I and the SLF-II/SLF-III complex.

CONCLUSIONS

Study results provide novel and robust anatomical evidence on the topography, morphology, and subcortical architecture of the SLF-I. This fiber tract was consistently recorded as a distinct anatomical entity of the medial cerebral aspect, participating in the axonal connectivity of high-order paralimbic areas.

Restricted access

Abhidha Shah, Aimee Goel, Abhinandan Patil and Atul Goel

Restricted access

Spyridon Komaitis, Aristotelis V. Kalyvas, Georgios P. Skandalakis, Evangelos Drosos, Evgenia Lani, Evangelia Liouta, Faidon Liakos, Theodosis Kalamatianos, Maria Piagkou, John A. Emelifeonwu, George Stranjalis and Christos Koutsarnakis

OBJECTIVE

The purpose of this study was to investigate the morphology, connectivity, and correlative anatomy of the longitudinal group of fibers residing in the frontal area, which resemble the anterior extension of the superior longitudinal fasciculus (SLF) and were previously described as the frontal longitudinal system (FLS).

METHODS

Fifteen normal adult formalin-fixed cerebral hemispheres collected from cadavers were studied using the Klingler microdissection technique. Lateral to medial dissections were performed in a stepwise fashion starting from the frontal area and extending to the temporoparietal regions.

RESULTS

The FLS was consistently identified as a fiber pathway residing just under the superficial U-fibers of the middle frontal gyrus or middle frontal sulcus (when present) and extending as far as the frontal pole. The authors were able to record two different configurations: one consisting of two distinct, parallel, longitudinal fiber chains (13% of cases), and the other consisting of a single stem of fibers (87% of cases). The fiber chains’ cortical terminations in the frontal and prefrontal area were also traced. More specifically, the FLS was always recorded to terminate in Brodmann areas 6, 46, 45, and 10 (premotor cortex, dorsolateral prefrontal cortex, pars triangularis, and frontal pole, respectively), whereas terminations in Brodmann areas 4 (primary motor cortex), 47 (pars orbitalis), and 9 were also encountered in some specimens. In relation to the SLF system, the FLS represented its anterior continuation in the majority of the hemispheres, whereas in a few cases it was recorded as a completely distinct tract. Interestingly, the FLS comprised shorter fibers that were recorded to interconnect exclusively frontal areas, thus exhibiting different fiber architecture when compared to the long fibers forming the SLF.

CONCLUSIONS

The current study provides consistent, focused, and robust evidence on the morphology, architecture, and correlative anatomy of the FLS. This fiber system participates in the axonal connectivity of the prefrontal-premotor cortices and allegedly subserves cognitive-motor functions. Based in the SLF hypersegmentation concept that has been advocated by previous authors, the FLS should be approached as a distinct frontal segment within the superior longitudinal system.

Restricted access

Georgios P. Skandalakis, Spyridon Komaitis, Aristotelis Kalyvas, Evgenia Lani, Chrysoula Kontrafouri, Evangelos Drosos, Faidon Liakos, Maria Piagkou, Dimitris G. Placantonakis, John G. Golfinos, Kostas N. Fountas, Eftychia Z. Kapsalaki, Constantinos G. Hadjipanayis, George Stranjalis and Christos Koutsarnakis

OBJECTIVE

Although a growing body of data support the functional connectivity between the precuneus and the medial temporal lobe during states of resting consciousness as well as during a diverse array of higher-order functions, direct structural evidence on this subcortical circuitry is scarce. Here, the authors investigate the very existence, anatomical consistency, morphology, and spatial relationships of the cingulum bundle V (CB-V), a fiber tract that has been reported to reside close to the inferior arm of the cingulum (CingI).

METHODS

Fifteen normal, formalin-fixed cerebral hemispheres from adults were treated with Klingler’s method and subsequently investigated through the fiber microdissection technique in a medial to lateral direction.

RESULTS

A distinct group of fibers is invariably identified in the subcortical territory of the posteromedial cortex, connecting the precuneus and the medial temporal lobe. This tract follows the trajectory of the parietooccipital sulcus in a close spatial relationship with the CingI and the sledge runner fasciculus. It extends inferiorly to the parahippocampal place area and retrosplenial complex area, followed by a lateral curve to terminate toward the fusiform face area (Brodmann area [BA] 37) and lateral piriform area (BA35). Taking into account the aforementioned subcortical architecture, the CB-V allegedly participates as a major subcortical stream within the default mode network, possibly subserving the transfer of multimodal cues relevant to visuospatial, facial, and mnemonic information to the precuneal hub. Although robust clinical evidence on the functional role of this stream is lacking, the modern neurosurgeon should be aware of this tract when manipulating cerebral areas en route to lesions residing in or around the ventricular trigone.

CONCLUSIONS

Through the fiber microdissection technique, the authors were able to provide original, direct structural evidence on the existence, morphology, axonal connectivity, and correlative anatomy of what proved to be a discrete white matter pathway, previously described as the CB-V, connecting the precuneus and medial temporal lobe.