Search Results

You are looking at 1 - 10 of 28 items for

  • Author or Editor: Eric L. Chang x
  • All content x
Clear All Modify Search
Free access

Kelly Lamiman, Kenneth K. Wong, Benita Tamrazi, Jason D. Nosrati, Arthur Olch, Eric L. Chang, and Erin N. Kiehna

OBJECTIVE

When complete resection of craniopharyngioma is not achievable or the sequelae are prohibitive, limited surgery and radiation therapy have demonstrated excellent local disease control while minimizing treatment-related sequelae. When residual tissue exists, there is a propensity for further cyst development and expansion during and after radiation therapy. This can result in obstructive hydrocephalus, visual changes, and/or clinical decline. The authors present a quantitative analysis of cyst expansion during and after radiotherapy and examine how it affected subsequent management.

METHODS

The authors performed an institutional review board–approved retrospective study of patients with histologically confirmed craniopharyngioma treated between 2000 and 2015 with surgery and intensity-modulated radiation therapy (IMRT) at a single institution. Volumetric measurements of cyst contours were generated by radiation oncology treatment planning software postoperatively, during IMRT, and up to 12 months after IMRT. Patient, tumor, and treatment–related variables were collected until the last known follow-up and were analyzed.

RESULTS

Twenty-seven patients underwent surgery and IMRT. The median total radiation dose was 54 Gy. Of the 27 patients, 11 patients (40.7%) demonstrated cyst expansions within 1 year of IMRT. Of note, all tumors with cyst expansion were radiographically Puget Grade 2. Maximal cyst expansion peaked at 4.27 months following radiation therapy, with a median volume growth of 4.1 cm3 (mean 9.61 cm3) above the postoperative cyst volume. Eight patients experienced spontaneous cyst regression without therapeutic intervention. Three patients experienced MRI-confirmed cyst enlargement during IMRT, all of whom required adaptive planning to ensure adequate coverage of the entire tumor volume. Two of these 3 patients required ventriculoperitoneal shunt placement and additional intervention. One underwent additional resection, and the other had placement of an intracystic catheter for aspiration and delivery of intracystic interferon within 12 months of completing IMRT. All 3 patients now have stable disease.

CONCLUSIONS

Craniopharyngioma cyst expansion occurred in approximately 40% of the patients during or after radiotherapy. In the majority of patients, cyst expansion was a self-limiting process and did not confer a worse outcome. During radiotherapy, cyst expansion may be apparent on image-guided radiation therapy. Adaptive IMRT planning may be required to ensure that the intended IMRT dose covers the entire tumor and cyst volume. The sequelae of cyst expansion include progressive hydrocephalus, which may be treated with a shunt. For patients with solitary cyst expansion, cyst aspiration and/or intracystic interferon may result in disease control.

Full access

Skeletal dysplasia involving the subaxial cervical spine

Report of two cases and review of the literature

Gregory P. Lekovic, Nitin R. Mariwalla, Eric M. Horn, Steven Chang, Harold L. Rekate, and Nicholas Theodore

✓ Because skeletal dysplasias are primary disorders of bone, they have not been commonly understood as neurosurgical diseases. Nevertheless, neurosurgical complications are commonly encountered in many cases of dysplasia syndromes. The authors present two cases of skeletal dysplasia that caused overt instability of the cervical spine. One patient with a diagnosis of Gorham disease of the cervical spine was treated with prolonged fixation in a halo brace after an initial attempt at instrumentation with a posterior occiput–C4 fusion. The other patient, who at birth was identified to have camptomelic dysplasia, has been treated conservatively from the outset. Although these two patients presented with different disorders—in one patient adequate mature bone never formed and in the other patient progressive bone loss became apparent after a seemingly normal initial development—these cases demonstrate unequivocally that surgical options for fusion are ultimately limited by the quality of the underlying bone. In patients in whom the bone itself is inadequate for use as a substrate for fusion, there are currently limited treatment options. Future improvements in our understanding of chondrogenesis and ossification may lead to the design of superior methods of encouraging fusion in these patients; however, at the present time, long-term maintenance in a halo brace may, in fact, be the only treatment.

Restricted access

Arjun Sahgal, Mark Bilsky, Eric L. Chang, Lijun Ma, Yoshiya Yamada, Laurence D. Rhines, Daniel Létourneau, Matthew Foote, Eugene Yu, David A. Larson, and Michael G. Fehlings

Stereotactic body radiotherapy (SBRT) for spinal metastases is an emerging therapeutic option aimed at delivering high biologically effective doses to metastases while sparing the adjacent normal tissues. This technique has emerged following advances in radiation delivery that include sophisticated radiation treatment planning software, body immobilization devices, and capabilities of detecting and correcting patient positional deviations with imageguided radiotherapy. There are limited clinical data specifically supporting the role of SBRT as a superior alternative to conventional radiation in the postoperative patient. The focus of this review was to examine the evidence pertaining to spine SBRT in the treatment of spinal metastases and to provide a comprehensive analysis of published patterns of failure, with emphasis on the postoperative patient.

Free access

James Pan, Allen L. Ho, Myreille D'Astous, Eric S. Sussman, Patricia A. Thompson, Armine T. Tayag, Louisa Pangilinan, Scott G. Soltys, Iris C. Gibbs, and Steven D. Chang

OBJECTIVE

Stereotactic radiosurgery (SRS) has been an attractive treatment option for hemangioblastomas, especially for lesions that are surgically inaccessible and in patients with von Hippel-Lindau (VHL) disease and multiple lesions. Although there has been a multitude of studies examining the utility of SRS in intracranial hemangioblastomas, SRS has only recently been used for spinal hemangioblastomas due to technical limitations. The purpose of this study is to provide a long-term evaluation of the effectiveness of image-guided radiosurgery in halting tumor progression and providing symptomatic relief for spinal hemangioblastomas.

METHODS

Between 2001 and 2011, 46 spinal hemangioblastomas in 28 patients were treated using the CyberKnife image-guided radiosurgery system at the authors' institution. Fourteen of these patients also had VHL disease. The median age at treatment was 43.5 years (range 19–85 years). The mean prescription radiation dose to the tumor periphery was 21.6 Gy (range 15–35 Gy). The median tumor volume was 0.264 cm3 (range 0.025–70.9 cm3). Tumor response was evaluated on serial, contrast-enhanced CT and MR images. Clinical response was evaluated by clinical and imaging evaluation.

RESULTS

The mean follow-up for the cohort was 54.3 months. Radiographic follow-up was available for 19 patients with 34 tumors; 32 (94.1%) tumors were radiographically stable or displayed signs of regression. Actuarial control rates at 1, 3, and 5 years were 96.1%, 92.3%, and 92.3%, respectively. Clinical evaluation on follow-up was available for 13 patients with 16 tumors; 13 (81.2%) tumors in 10 patients had symptomatic improvement. No patient developed any complications related to radiosurgery.

CONCLUSIONS

Image-guided SRS is safe and effective for the primary treatment of spinal hemangioblastomas and is an attractive alternative to resection, especially for those with VHL disease.

Restricted access

Seref Dogan, Sam Safavi-Abbasi, Nicholas Theodore, Steven W. Chang, Eric M. Horn, Nittin R. Mariwalla, Harold L. Rekate, and Volker K. H. Sonntag

Object

The authors evaluated the mechanisms and patterns of thoracic, lumbar, and sacral spinal injuries in a pediatric population as well as factors affecting the management and outcome of these injuries.

Methods

The records of 89 patients (46 boys and 43 girls; mean age 13.2 years, range 3–16 years) with thoracic, lumbar, or sacral injuries were reviewed. Motor vehicle accidents were the most common cause of injury. Eighty-two patients (92.1%) were between 10 and 16 years old, and seven (7.9%) were between 3 and 9 years old. Patient injuries included fracture (91%), fracture and dislocation (6.7%), dislocation (1.1%), and ligamentous injury (1.1%). The L2–5 region was the most common injury site (29.8%) and the sacrum the least common injury site (5%). At the time of presentation 85.4% of the patients were neurologically intact, 4.5% had incomplete injuries, and 10.1% had complete injuries. Twenty-six percent of patients underwent surgery for their injuries whereas 76% received nonsurgical treatment. In patients treated surgically, an anterior approach was used in six patients (6.7%), a posterior approach in 16 (18%), and a combined approach in one (1.1%). Postoperatively, six patients (26.1%) with neurological deficits improved, one of whom recovered fully from an initially complete injury.

Conclusions

Thoracic and lumbar spine injuries were most common in children older than 9 years. Multilevel injuries were common and warranted imaging evaluation of the entire spinal column. Most patients were treated conservatively. The prognosis for neurological recovery is related to the initial severity of the neurological injuries. Some pediatric patients with devastating spinal cord injuries can recover substantial neurological function.

Restricted access

Nicholas S. Boehling, David R. Grosshans, Pamela K. Allen, Mary F. McAleer, Allen W. Burton, Syed Azeem, Laurence D. Rhines, and Eric L. Chang

Object

The aim of this study was to identify potential risk factors for and determine the rate of vertebral compression fracture (VCF) after intensity-modulated, near-simultaneous, CT image–guided stereotactic body radiotherapy (SBRT) for spinal metastases.

Methods

The study group consisted of 123 vertebral bodies (VBs) in 93 patients enrolled in prospective protocols for metastatic disease. Data from these patients were retrospectively analyzed. Stereotactic body radiotherapy consisted of 1, 3, or 5 fractions for overall median doses of 18, 27, and 30 Gy, respectively. Magnetic resonance imaging studies, obtained at baseline and at each follow-up, were evaluated for VCFs, tumor involvement, and radiographic progression. Self-reported average pain levels were scored based on the 11-point (0–10) Brief Pain Inventory both at baseline and at follow-up. Obesity was defined as a body mass index ≥ 30.

Results

The median imaging follow-up was 14.9 months (range 1–71 months). Twenty-five new or progressing fractures (20%) were identified, and the median time to progression was 3 months after SBRT. The most common histologies included renal cancer (36 VBs, 10 fractures, 10 tumor progressions), breast cancer (20 VBs, 0 fractures, 5 tumor progressions), thyroid cancer (14 VBs, 1 fracture, 2 tumor progressions), non–small cell lung cancer (13 VBs, 3 fractures, 3 tumor progressions), and sarcoma (9 VBs, 2 fractures, 2 tumor progressions). Fifteen VBs were treated with kyphoplasty or vertebroplasty after SBRT, with 5 procedures done for preexisting VCFs. Tumor progression was noted in 32 locations (26%) with 5 months' median time to progression. At the time of noted fracture progression there was a trend toward higher average pain scores but no significant change in the median value. Univariate logistic regression showed that an age > 55 years (HR 6.05, 95% CI 2.1–17.47), a preexisting fracture (HR 5.05, 95% CI 1.94–13.16), baseline pain and narcotic use before SBRT (pain: HR 1.31, 95% CI 1.06–1.62; narcotic: HR 2.98, 95% CI 1.17–7.56) and after SBRT (pain: HR 1.34, 95% CI 1.06–1.70; narcotic: HR 3.63, 95% CI 1.41–9.29) were statistically significant predictors of fracture progression. On multivariate analysis an age > 55 years (HR 10.66, 95% CI 2.81–40.36), a preexisting fracture (HR 9.17, 95% CI 2.31–36.43), and baseline pain (HR 1.41, 95% CI 1.05–1.9) were found to be significant risks, whereas obesity (HR 0.02, 95% CI 0–0.2) was protective.

Conclusions

Stereotactic body radiotherapy is associated with a significant risk (20%) of VCF. Risk factors for VCF include an age > 55 years, a preexisting fracture, and baseline pain. These risk factors may aid in the selection of which spinal SBRT patients should be considered for prophylactic vertebral stabilization or augmentation procedures. Clinical trial registration no.: NCT00508443.

Full access

Jonathan N. Sellin, William Reichardt, Andrew J. Bishop, Dima Suki, Laurence D. Rhines, Stephen H. Settle, Paul D. Brown, Jing Li, Ganesh Rao, Eric L. Chang, and Claudio E. Tatsui

OBJECT

Palliative resection of renal cell carcinoma (RCC) spinal metastasis is indicated in cases of neurological compromise or mechanical instability, whereas conventional external beam radiotherapy (EBRT) is commonly used for pain control. Recently, spinal stereotactic radiosurgery (SRS) has emerged as a safe alternative, delivering higher therapeutic doses of radiation to spinal metastases. To better understand factors affecting survival in patients undergoing spinal SRS for metastatic RCC, the authors performed a retrospective analysis of a consecutive series of cases at a tertiary cancer center.

METHODS

Patients harboring contiguous sites of vertebral body involvement from metastatic RCC who received upfront spinal SRS treatment at The University of Texas MD Anderson Cancer Center between 2005 and 2012 were identified. Demographic data, pain scores, radiographic data, overall survival, complications, status of systemic disease, neurological and functional status, and time between primary diagnosis and diagnosis of metastasis (systemic and spinal) were analyzed to determine their influence on survival.

RESULTS

Thirty-seven patients receiving treatment for 40 distinct, contiguous sites of disease were included. The median overall survival after spinal SRS was 16.3 months (range 7.4–25.3 months). Univariate analysis revealed several factors significantly associated with improved overall survival. Local progression after spinal SRS was associated with worse overall survival compared with sustained local control (HR 3.4, 95% CI 1.6–7.4, p = 0.002). Median survival in patients with a Karnofsky Performance Scale (KPS) score ≥ 70 was longer than in patients with a KPS score < 70 (HR 4.7, 95% CI 2.1–10.7, p < 0.001). Patients with neurological deficits at the time of spinal SRS had a shorter median survival than those without (HR 4.2, 95% CI 1.4–12.0, p = 0.008). Individuals with nonprogressive systemic disease at the time of spinal SRS had a longer median survival than those with systemic progression at the time of treatment (HR 8.3, 95% CI 3.3–20.7, p < 0.001). Median survival in patients experiencing any metastasis < 12 months after primary RCC diagnosis was shorter than in patients experiencing any metastasis > 12 months after primary diagnosis, a difference that approached but did not attain significance (HR 1.9, 95% CI 0.90–4.1, p = 0.09). On multivariate analysis, local progression of disease after spinal SRS, metastasis < 12 months after primary, KPS score ≤ 70, and progression of systemic disease at time of spinal SRS all remained significant factors influencing survival (respectively, HR 3.7, p = 0.002; HR 2.6, p = 0.026; HR 4.0, p = 0.002; and HR 13.2, p < 0.001).

CONCLUSIONS

We identified several factors associated with survival after spinal SRS for RCC metastases, including local progression, time between first metastasis and primary RCC diagnosis, KPS score, presence of neurological deficits, and progressive metastatic disease. These factors should be taken into consideration when considering a patient for spinal SRS for RCC metastases.

Full access

Kevin Diao, Shelly X. Bian, David M. Routman, Cheng Yu, Paul E. Kim, Naveed A. Wagle, Michael K. Wong, Gabriel Zada, and Eric L. Chang

OBJECTIVE

Tumor and edema volume changes of brain metastases after stereotactic radiosurgery (SRS) and ipilimumab are not well described, and there is concern regarding the safety of combination treatment. The authors evaluated tumor, edema, and adverse radiation-induced changes after SRS with and without ipilimumab and identified associated risk factors.

METHODS

This single-institution retrospective study included 72 patients with melanoma brain metastases treated consecutively with upfront SRS from 2006 to 2015. Concurrent ipilimumab was defined as ipilimumab treatment within 4 weeks of SRS. At baseline and during each follow-up, tumor and edema were measured in 3 orthogonal planes. The (length × width × height/2) formula was used to estimate tumor and edema volumes and was validated in the present study for estimation of edema volume. Tumor and edema volume changes from baseline were compared using the Kruskal-Wallis test. Local failure, lesion hemorrhage, and treatment-related imaging changes (TRICs) were analyzed with the Cox proportional hazards model.

RESULTS

Of 310 analyzed lesions, 91 were not treated with ipilimumab, 59 were treated with concurrent ipilimumab, and 160 were treated with nonconcurrent ipilimumab. Of 106 randomly selected lesions with measurable peritumoral edema, the mean edema volume by manual contouring was 7.45 cm3 and the mean volume by (length × width × height)/2 formula estimation was 7.79 cm3 with R2 = 0.99 and slope of 1.08 on line of best fit. At 6 months after SRS, the ipilimumab groups had greater tumor (p = 0.001) and edema (p = 0.005) volume reduction than the control group. The concurrent ipilimumab group had the highest rate of lesion response and lowest rate of lesion progression (p = 0.002). Within the concurrent ipilimumab group, SRS dose ≥ 20 Gy was associated with significantly greater median tumor volume reduction at 3 months (p = 0.01) and 6 months (p = 0.02). The concurrent ipilimumab group also had the highest rate of lesion hemorrhage (p = 0.01). Any ipilimumab was associated with higher incidence of symptomatic TRICs (p = 0.005). The overall incidence of pathologically confirmed radiation necrosis (RN) was 2%. In multivariate analysis, tumor and edema response at 3 months were the strongest predictors of local failure (HR 0.131 and HR 0.125) and lesion hemorrhage (HR 0.225 and HR 0.262). Tumor and edema response at 1.5 months were the strongest predictors of TRICs (HR 0.144 and HR 0.297).

CONCLUSIONS

The addition of ipilimumab improved tumor and edema volume reduction but was associated with a higher incidence of lesion hemorrhage and symptomatic TRICs. There may be a radiation dose-response relationship between SRS and ipilimumab when administered concurrently. Early tumor and edema response were excellent predictors of subsequent local failure, lesion hemorrhage, and TRICs. The incidence of pathologically proven RN was low, supporting the relative safety of ipilimumab in radiosurgery treatment.

Restricted access

Letter to the Editor

Counting lumbar vertebrae

Brent L. Clyde

Restricted access

Anita Mahajan, Ian E. McCutcheon, Dima Suki, Eric L. Chang, Samuel J. Hassenbusch, Jeffrey S. Weinberg, Almon Shiu, Moshe H. Maor, and Shiao Y. Woo

Object. The role of stereotactic radiosurgery (SRS) for recurrent glioblastoma multiforme (GBM) was evaluated in a case—control study.

Methods. All patients who underwent SRS for recurrent GBM before March 2003 formed the case group. A control group of patients who did not undergo SRS was created from an institutional database, and each case was matched for known prognostic factors in GBM. The medical and neuroimaging records of all the patients were reviewed, and survival and treatment outcomes were recorded.

The case and control groups were well matched with regard to demographics and pre-SRS interventions. In the control group, the date on which magnetic resonance imaging identified a recurrent lesion that would have been eligible for SRS was deemed the “SRS” date. The number of surgeries performed in the control group was statistically higher than that in the case group. The median duration of overall survival from diagnosis was 26 months in the case group and 23 months in the control group. From the date of SRS or “SRS”, the median duration of survival was 11 months in the case group and 10 months in the control group, a difference that was not statistically significant.

Conclusions. It appears that a subgroup of patients with GBMs has a higher than expected median survival duration despite the initial prognostic factors. In patients with localized recurrences, survival may be prolonged by applying aggressive local disease management by using either SRS or resection to equal advantage.