Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Elisa Cristiana Winkelmann Duarte x
  • All content x
Clear All Modify Search
Free access

Jayme Augusto Bertelli, Sushil Nehete, Elisa Cristiana Winkelmann Duarte, Neehar Patel, and Marcos Flávio Ghizoni

OBJECTIVE

The authors describe the anatomy of the motor branches of the pronator teres (PT) as it relates to transferring the nerve of the extensor carpi radialis brevis (ECRB) to restore wrist extension in patients with radial nerve paralysis. They describe their anatomical cadaveric findings and report the results of their nerve transfer technique in several patients followed for at least 24 months postoperatively.

METHODS

The authors dissected both upper limbs of 16 fresh cadavers. In 6 patients undergoing nerve surgery on the elbow, they dissected the branches of the median nerve and confirmed their identity by electrical stimulation. Of these 6 patients, 5 had had a radial nerve injury lasting 7–12 months, underwent transfer of the distal PT motor branch to the ECRB, and were followed for at least 24 months.

RESULTS

The PT was innervated by two branches: a proximal branch, arising at a distance between 0 and 40 mm distal to the medial epicondyle, responsible for PT superficial head innervation, and a distal motor branch, emerging from the anterior side of the median nerve at a distance between 25 and 60 mm distal to the medial epicondyle. The distal motor branch of the PT traveled approximately 30 mm along the anterior side of the median nerve; just before the median nerve passed between the PT heads, it bifurcated to innervate the deep head and distal part of the superficial head of the PT. In 30% of the cadaver limbs, the proximal and distal PT branches converged into a single trunk distal to the medial epicondyle, while they converged into a single branch proximal to it in 70% of the limbs. The proximal and distal motor branches of the PT and the nerve to the ECRB had an average of 646, 599, and 457 myelinated fibers, respectively.

All patients recovered full range of wrist flexion-extension, grade M4 strength on the British Medical Research Council scale. Grasp strength recovery achieved almost 50% of the strength of the contralateral side. All patients could maintain their wrist in extension while performing grasp measurements.

CONCLUSIONS

The distal PT motor branch is suitable for reinnervation of the ECRB in radial nerve paralysis, for as long as 7–12 months postinjury.

Restricted access

Jayme A. Bertelli, Neehar Patel, Francisco Soldado, and Elisa Cristiana Winkelmann Duarte

OBJECTIVE

The purpose of this study was to describe the anatomy of donor and recipient median nerve motor branches for nerve transfer surgery within the cubital fossa.

METHODS

Bilateral upper limbs of 10 fresh cadavers were dissected after dyed latex was injected into the axillary artery.

RESULTS

In the cubital fossa, the first branch was always the proximal branch of the pronator teres (PPT), whereas the last one was the anterior interosseous nerve (AIN) and the distal motor branch of the flexor digitorum superficialis (DFDS) on a consistent basis. The PT muscle was also innervated by a distal branch (DPT), which emerged from the anterior side of the median nerve and provided innervation to its deep head. The palmaris longus (PL) motor branch was always the second branch after the PPT, emerging as a single branch together with the flexor carpi radialis (FCR) or the proximal branch of the flexor digitorum superficialis. The FCR motor branch was prone to variations. It originated proximally with the PL branch (35%) or distally with the AIN (35%), and less frequently from the DPT. In 40% of dissections, the FDS was innervated by a single branch (i.e., the DFDS) originating close to the AIN. In 60% of cases, a proximal branch originated together with the PL or FCR. The AIN emerged from the posterior side of the median nerve and had a diameter of 2.3 mm, twice that of other branches. When dissections were performed between the PT and FCR muscles at the FDS arcade, we observed the AIN lying lateral and the DFDS medial to the median nerve. After crossing the FDS arcade, the AIN divided into: 1) a lateral branch to the flexor pollicis longus (FPL), which bifurcated to reach the anterior and posterior surfaces of the FPL; 2) a medial branch, which bifurcated to reach the flexor digitorum profundus (FDP); and 3) a long middle branch to the pronator quadratus. The average numbers of myelinated fibers within each median nerve branch were as follows (values expressed as the mean ± SD): PPT 646 ± 249; DPT 599 ± 150; PL 259 ± 105; FCR 541 ± 199; proximal FDS 435 ± 158; DFDS 376 ± 150; FPL 480 ± 309; first branch to the FDP 397 ± 12; and second branch to the FDP 369 ± 33.

CONCLUSIONS

The median nerve's branching pattern in the cubital fossa is predictable. The most important variation involves the FCR motor branch. These anatomical findings aid during nerve transfer surgery to restore function when paralysis results from injury to the radial or median nerves, brachial plexus, or spinal cord.

Free access

Jayme Augusto Bertelli, Sushil Nehete, Elisa Cristiana Winkelmann Duarte, Neehar Patel, and Marcos Flávio Ghizoni

OBJECTIVE

The authors describe the anatomy of the motor branches of the pronator teres (PT) as it relates to transferring the nerve of the extensor carpi radialis brevis (ECRB) to restore wrist extension in patients with radial nerve paralysis. They describe their anatomical cadaveric findings and report the results of their nerve transfer technique in several patients followed for at least 24 months postoperatively.

METHODS

The authors dissected both upper limbs of 16 fresh cadavers. In 6 patients undergoing nerve surgery on the elbow, they dissected the branches of the median nerve and confirmed their identity by electrical stimulation. Of these 6 patients, 5 had had a radial nerve injury lasting 7–12 months, underwent transfer of the distal PT motor branch to the ECRB, and were followed for at least 24 months.

RESULTS

The PT was innervated by two branches: a proximal branch, arising at a distance between 0 and 40 mm distal to the medial epicondyle, responsible for PT superficial head innervation, and a distal motor branch, emerging from the anterior side of the median nerve at a distance between 25 and 60 mm distal to the medial epicondyle. The distal motor branch of the PT traveled approximately 30 mm along the anterior side of the median nerve; just before the median nerve passed between the PT heads, it bifurcated to innervate the deep head and distal part of the superficial head of the PT. In 30% of the cadaver limbs, the proximal and distal PT branches converged into a single trunk distal to the medial epicondyle, while they converged into a single branch proximal to it in 70% of the limbs. The proximal and distal motor branches of the PT and the nerve to the ECRB had an average of 646, 599, and 457 myelinated fibers, respectively.

All patients recovered full range of wrist flexion-extension, grade M4 strength on the British Medical Research Council scale. Grasp strength recovery achieved almost 50% of the strength of the contralateral side. All patients could maintain their wrist in extension while performing grasp measurements.

CONCLUSIONS

The distal PT motor branch is suitable for reinnervation of the ECRB in radial nerve paralysis, for as long as 7–12 months postinjury.