Search Results

You are looking at 1 - 10 of 19 items for

  • Author or Editor: Edward Monaco x
Clear All Modify Search
Full access

Peter C. Gerszten and Edward A. Monaco III

Object

Patients with symptomatic pathological compression fractures require spinal stabilization surgery for mechanical back pain control and radiation therapy for the underlying malignant process. Spinal radiosurgery provides excellent long-term radiographic control for vertebral metastases. Percutaneous cement augmentation using polymethylmethacrylate (PMMA) may be contraindicated in lesions with spinal canal compromise due to the risk of displacement of tumor resulting in spinal cord or cauda equina injury. However, there is also significant morbidity associated with open corpectomy procedures in patients with metastatic cancer, especially in those who subsequently require adjuvant radiotherapy. This study evaluated a treatment paradigm for malignant vertebral compression fractures consisting of transpedicular coblation corpectomy combined with closed fracture reduction and fixation, followed by spinal radiosurgery.

Methods

Eleven patients (6 men and 5 women, mean age 58 years) with symptomatic vertebral body metastatic tumors associated with moderate spinal canal compromise were included in this study (8 thoracic levels, 3 lumbar levels). Primary histologies included 4 lung, 2 breast, 2 renal, and 1 each of thyroid, bladder, and hepatocellular carcinomas. All patients underwent percutaneous transpedicular coblation corpectomy immediately followed by balloon kyphoplasty through the same 8-gauge cannula under fluoroscopic guidance. Patients subsequently underwent radiosurgery to the affected vertebral body (mean time to treatment 14 days). Postoperatively, patients were assessed for pain reduction and neurological morbidity.

Results

There were no complications associated with any part of the procedure. Adequate cement augmentation within the vertebral body was achieved in all cases. The mean radiosurgical tumor dose was 19 Gy covering the entire vertebral body. The procedure provided long-term pain improvement and radiographic tumor control in all patients (follow-up range 7–44 months). No patient later required open surgery. No radiation-induced toxicity or new neurological deficit occurred during the follow-up period.

Conclusions

This treatment paradigm for pathological fractures of percutaneous transpedicular corpectomy combined with cement augmentation followed by radiosurgery was found to be safe and clinically effective. This technique combines minimally invasive procedures that avoid the morbidity associated with open surgery while providing spinal canal decompression and immediate fracture stabilization, and then administering a single-fraction tumoricidal radiation dose.

Full access

Ajay Niranjan, Sudesh S. Raju, Edward A. Monaco III, John C. Flickinger and L. Dade Lunsford

OBJECTIVE

Unilateral Gamma Knife thalamotomy (GKT) is a well-established treatment for patients with medically refractory tremor who are not eligible for invasive procedures due to increased risk of compications. The purpose of this study was to evaluate whether staged bilateral GKT provides benefit with acceptable risk to patients suffering from disabling medically refractory bilateral tremor.

METHODS

Eleven patients underwent staged bilateral GKT during a 17-year period (1999–2016). Eight patients had essential tremor (ET), 2 had Parkinson's disease (PD)–related tremor, and 1 had multiple-sclerosis (MS)–related tremor. For the first GKT, a median maximum dose of 140 Gy was delivered to the posterior-inferior region of the nucleus ventralis intermedius (VIM) through a single isocenter with 4-mm collimators. Patients who benefitted from unilateral GKT were eligible for a contralateral GKT 1–2 years later (median 22 months). For the second GKT, a median maximum dose of 130 Gy was delivered to the opposite VIM nucleus to a single 4-mm isocenter. The Fahn-Tolosa-Marin (FTM) clinical tremor rating scale was used to score tremor, drawing, and drinking before and after each GKT. The FTM writing score was assessed only for the dominant hand before and after the first GKT. The Karnofsky Performance Status (KPS) was used to assess quality of life and activities of daily living before and after the first and second GKT.

RESULTS

The median time to last follow-up after the first GKT was 35 months (range 11–70 months). All patients had improvement in at least 1 FTM score after the first GKT. Three patients (27.3%) had tremor arrest and complete restoration of function (noted via FTM tremor, writing, drawing, and drinking scores equaling zero). No patient had tremor recurrence or diminished tremor relief after the first GKT. One patient experienced new temporary neurological deficit (contralateral lower-extremity hemiparesis) from the first GKT. The median time to last follow-up after the second GKT was 12 months (range 2–70 months). Nine patients had improvement in at least 1 FTM score after the second GKT. Two patients had tremor arrest and complete restoration of function. No patient experienced tremor recurrence or diminished tremor relief after the second GKT. No patient experienced new neurological or radiological adverse effect from the second GKT. Statistically significant improvements were noted in the KPS score following the first and second GKT.

CONCLUSIONS

Staged bilateral GKT provided effective relief for medically refractory, disabling, bilateral tremor without increased risk of neurological complications. It is an appropriate strategy for carefully selected patients with medically refractory bilateral tremor who are not eligible for deep brain stimulation.

Restricted access

Sudesh S. Raju, Ajay Niranjan, Edward A. Monaco III, John C. Flickinger and L. Dade Lunsford

OBJECTIVE

Multiple sclerosis (MS) is a neurodegenerative disease that can lead to severe intention tremor in some patients. In several case reports, conventional radiotherapy has been reported to possibly exacerbate MS. Radiosurgery dramatically limits normal tissue irradiation to potentially avoid such a problem. Gamma Knife thalamotomy (GKT) has been established as a minimally invasive technique that is effective in treating essential tremor and Parkinson’s disease–related tremor. The goal in this study was to analyze the outcomes of GKT in patients suffering from medically refractory MS-related tremor.

METHODS

The authors retrospectively studied the outcomes of 15 patients (mean age 46.5 years) who had undergone GKT over a 15-year period (1998–2012). Fourteen patients underwent GKT at a median maximum dose of 140 Gy (range 130–150 Gy) using a single 4-mm isocenter. One patient underwent GKT at a dose of 140 Gy delivered via two 4-mm isocenters (3 mm apart). The posteroinferior region of the nucleus ventralis intermedius (VIM) was the target for all GKTs. The Fahn-Tolosa-Marin clinical tremor rating scale was used to evaluate tremor, handwriting, drawing, and drinking. The median time to the last follow-up was 39 months.

RESULTS

After GKT, 13 patients experienced tremor improvement on the side contralateral to surgery. Four patients noted tremor arrest at a median of 4.5 months post-GKT. Seven patients had excellent tremor improvement and 6 had good tremor improvement. Four patients noted excellent functional improvement, 8 noted good functional improvement, and 1 noted satisfactory functional improvement. Three patients experienced diminished tremor relief at a median of 18 months after radiosurgery. Two patients experienced temporary adverse radiation effects. Another patient developed a large thalamic cyst 60 months after GKT, which was successfully managed with Ommaya reservoir placement.

CONCLUSIONS

Gamma Knife thalamotomy was found to be a minimally invasive and beneficial procedure for medically refractory MS tremor.

Restricted access

Ajay Niranjan, Ahmed Kashkoush, Hideyuki Kano, Edward A. Monaco III, John C. Flickinger and L. Dade Lunsford

OBJECTIVE

Seizures are the second-most common presenting symptom in patients with lobar arteriovenous malformations (AVMs). However, few studies have assessed the long-term effect of stereotactic radiosurgery (SRS) on seizure control. The authors of this study assess the outcome of SRS for these patients to identify prognostic factors associated with seizure control.

METHODS

Patients with AVM who presented with a history of seizure and underwent SRS at the authors’ institution between 1987 and 2012 were retrospectively assessed. The total cohort included 155 patients with a mean follow-up of 86 months (range 6–295 months). Primary outcomes assessed were seizure frequency, antiepileptic drug regimen, and seizure freedom for 6 months prior to last follow-up.

RESULTS

Seizure-free status was achieved in 108 patients (70%), with an additional 23 patients (15%) reporting improved seizure frequency as compared to their pre-SRS status. The median time to seizure-free status was estimated to be 12 months (95% CI 0–27 months) as evaluated via Kaplan-Meier survival analysis. The mean seizure frequency prior to SRS was 14.2 (95% CI 5.4–23.1) episodes per year. Although not all patients tried, the proportion of patients successfully weaned off all antiepileptic drugs was 18% (28/155 patients). On multivariate logistic regression, focal impaired awareness seizure type (also known as complex partial seizures) and superficial venous drainage were significantly associated with a decreased odds ratio for seizure-free status at last follow-up (OR 0.37 [95% CI 0.15–0.92] for focal impaired awareness seizures; OR 0.36 [95% CI 0.16–0.81] for superficial venous drainage). The effects of superficial venous drainage on seizure outcome were nonsignificant when excluding patients with < 2 years of follow-up. AVM obliteration did not correlate with long-term seizure freedom (p = 0.202, chi-square test).

CONCLUSIONS

This study suggests that SRS improves long-term seizure control and increases the likelihood of being medication free, independently of AVM obliteration. Patients with focal impaired awareness seizures were less likely to obtain long-term seizure relief.

Free access

Nathan T. Zwagerman, Michael M. McDowell, Ronald L. Hamilton, Edward A. Monaco III, John C. Flickinger and Peter C. Gerszten

OBJECTIVE

Increased survival time after diagnosis of neoplastic disease has resulted in a gradual increase in spine tumor incidence. Radiosurgery is frequently a viable alternative to operative management in a population with severe medical comorbidities. The authors sought to assess the histopathological consequences of radiosurgery in the subset of patients progressing to operative intervention.

METHODS

Eighteen patients who underwent radiosurgery for spine tumors between 2008 and 2014 subsequently progressed to surgical treatment. A histopathological examination of these cases was performed. Indications for surgery included symptomatic compression fractures, radiographic instability, and symptoms of cord or cauda equina compression. Biopsy samples were obtained from the tumor within the radiosurgical zone in all cases and were permanently fixated. Viable tumor samples were stained for Ki 67.

RESULTS

Fifteen patients had metastatic lesions and 3 patients had neurofibromas. The mean patient age was 57 years. The operative indication was symptomatic compression in 10 cases (67%). The most frequent metastatic lesions were breast cancer (4 cases), renal cell carcinoma (3), prostate cancer (2), and endometrial cancer (2). In 9 (60%) of the 15 metastatic cases, histological examination of the lesions showed minimal evidence of inflammation. Viable tumor at the margins of the radiosurgery was seen in 9 (60%) of the metastatic cases. Necrosis in the tumor bed was frequent, as was fibrotic bone marrow. Vascular ectasia was seen in 2 of 15 metastatic cases, but sclerosis with ectasia was frequent. No evidence of malignant conversion was seen in the periphery of the lesions in the 3 neurofibroma cases. In 1 case of neurofibroma, the lesion demonstrated some small areas of remnant tumor in the radiosurgical target zone.

CONCLUSIONS

This case series demonstrates important histopathological characteristics of spinal lesions treated by SRS. Regions with the highest exposure to radiation appear to be densely necrotic and show little evidence of tumor growth, whereas peripheral regions distant from the radiation dosage are more likely to demonstrate viable tumor in malignant and benign neoplasms. Physiological tissue appears to be similarly affected. With additional investigation, a more homogenized field of hypofractionated radiation exposure may allow for tumor obliteration with relative preservation of critical anatomical structures.

Restricted access

Daniel A. Tonetti, Bradley A. Gross, Kyle M. Atcheson, Brian T. Jankowitz, Hideyuki Kano, Edward A. Monaco III, Ajay Niranjan, John C. Flickinger and L. Dade Lunsford

OBJECTIVE

The authors of this study found that, given the latency period required for arteriovenous malformation (AVM) obliteration after stereotactic radiosurgery (SRS), a study with limited follow-up cannot assess the benefit of SRS for unruptured AVMs.

METHODS

The authors reviewed their institutional experience with “ARUBA (A Randomized Trial of Unruptured Brain Arteriovenous Malformations)–eligible” AVMs treated with SRS between 1987 and 2016, with the primary outcome defined as stroke (ischemic or hemorrhagic) or death (AVM related or AVM unrelated). Patients with at least 3 years of follow-up in addition to those who experienced stroke or died during the latency period were included. Secondary outcome measures included obliteration rates, patients with new seizure disorders, and those with new focal deficits without stroke.

RESULTS

Of 233 patients included in this study, 32 had a stroke or died after SRS over the mean 8.4-year follow-up (14%). Utilizing the 10% stroke or death rate at a mean 2.8-year follow-up for untreated AVMs in ARUBA, the rate in the authors’ study is significantly lower than that anticipated at the 8.4-year follow-up for an untreated cohort (14% vs 30%, p = 0.0003). Notwithstanding obliteration, in this study, annualized rates of hemorrhage and stroke or death after 3 years following SRS were 0.4% and 0.8%, respectively. The overall obliteration rate was 72%; new seizure disorders, temporary new focal deficits without stroke, and permanent new focal deficits without stroke occurred in 2% of patients each.

CONCLUSIONS

After a sensible follow-up period exceeding the latency period, there is a lower rate of stroke/death for patients with treated, unruptured AVMs with SRS than for patients with untreated AVMs.

Restricted access

Hilal A. Kanaan, Paul A. Gardner, Gabrielle Yeaney, Daniel M. Prevedello, Edward A. Monaco III, Geoffrey Murdoch, Ian F. Pollack and Amin B. Kassam

Olfactory schwannomas are rare tumors of the anterior skull base that are possibly derived from ectopic Schwann cells, perivascular neural tissue, or sensory nerves of the meninges. The authors report the case of a 14-year-old boy with an olfactory schwannoma that extended inferiorly through the cranial base and superiorly into the frontal lobe. Because of the growth characteristics of the tumor and the significant overlying frontal lobe edema, the lesion was approached via an endonasal endoscopic route, as a strategy to minimize brain retraction. This tumor was characterized radiographically as contrast-enhancing with cystic areas and erosion into bone. The tumor showed immunoreactivity for S100 protein and leukocyte antigen 7 (CD57) but not epithelial membrane antigen, supporting the diagnosis of olfactory schwannoma. A gross-total resection was achieved. This approach represents a novel application of endoscopic endonasal surgery to the pediatric neurosurgical context, as well as a favorable outcome in an extremely unusual tumor type, that should be applicable to other appropriately selected pediatric brain tumors.

Restricted access

Hideyuki Kano, Douglas Kondziolka, John C. Flickinger, Kyung-Jae Park, Aditya Iyer, Huai-che Yang, Xiaomin Liu, Edward A. Monaco III, Ajay Niranjan and L. Dade Lunsford

Object

In this paper the authors' goal was to define the long-term benefits and risks of stereotactic radiosurgery (SRS) for patients with arteriovenous malformations (AVMs) who underwent prior embolization.

Methods

Between 1987 and 2006, the authors performed Gamma Knife surgery in 996 patients with brain AVMs; 120 patients underwent embolization followed by SRS. In this series, 64 patients (53%) had at least one prior hemorrhage. The median number of embolizations varied from 1 to 5. The median target volume was 6.6 cm3 (range 0.2–26.3 cm3). The median margin dose was 18 Gy (range 13.5–25 Gy).

Results

After embolization, 25 patients (21%) developed symptomatic neurological deficits. The overall rates of total obliteration documented by either angiography or MRI were 35%, 53%, 55%, and 59% at 3, 4, 5, and 10 years, respectively. Factors associated with a higher rate of AVM obliteration were smaller target volume, smaller maximum diameter, higher margin dose, timing of embolization during the most recent 10-year period (1997–2006), and lower Pollock-Flickinger score. Nine patients (8%) had a hemorrhage during the latency period, and 7 patients died of hemorrhage. The actuarial rates of AVM hemorrhage after SRS were 0.8%, 3.5%, 5.4%, 7.7%, and 7.7% at 1, 2, 3, 5, and 10 years, respectively. The overall annual hemorrhage rate was 2.7%. Factors associated with a higher risk of hemorrhage after SRS were a larger target volume and a larger number of prior hemorrhages. Permanent neurological deficits due to adverse radiation effects (AREs) developed in 3 patients (2.5%) after SRS, and 1 patient had delayed cyst formation 210 months after SRS. No patient died of AREs. A larger 12-Gy volume was associated with higher risk of symptomatic AREs. Using a case-control matched approach, the authors found that patients who underwent embolization prior to SRS had a lower rate of total obliteration (p = 0.028) than patients who had not undergone embolization.

Conclusions

In this 20-year experience, the authors found that prior embolization reduced the rate of total obliteration after SRS, and that the risks of hemorrhage during the latency period were not affected by prior embolization. For patients who underwent embolization to volumes smaller than 8 cm3, success was significantly improved. A margin dose of 18 Gy or more also improved success. In the future, the role of embolization after SRS should be explored.

Full access

Edward A. Monaco III, Aftab A. Khan, Ajay Niranjan, Hideyuki Kano, Ramesh Grandhi, Douglas Kondziolka, John C. Flickinger and L. Dade Lunsford

Object

The authors performed a retrospective review of prospectively collected data to evaluate the safety and efficacy of stereotactic radiosurgery (SRS) for the treatment of patients harboring symptomatic solitary cavernous malformations (CMs) of the brainstem that bleed repeatedly and are high risk for resection.

Methods

Between 1988 and 2005, 68 patients (34 males and 34 females) with solitary, symptomatic CMs of the brainstem underwent Gamma Knife surgery. The mean patient age was 41.2 years, and all patients had suffered at least 2 symptomatic hemorrhages (range 2–12 events) before radiosurgery. Prior to SRS, 15 patients (22.1%) had undergone attempted resection. The mean volume of the malformation treated was 1.19 ml, and the mean prescribed marginal radiation dose was 16 Gy.

Results

The mean follow-up period was 5.2 years (range 0.6–12.4 years). The pre-SRS annual hemorrhage rate was 32.38%, or 125 hemorrhages, excluding the first hemorrhage, over a total of 386 patient-years. Following SRS, 11 hemorrhages were observed within the first 2 years of follow-up (8.22% annual hemorrhage rate) and 3 hemorrhages were observed in the period after the first 2 years of follow-up (1.37% annual hemorrhage rate). A significant reduction (p < 0.0001) in the risk of brainstem CM hemorrhages was observed following radiosurgical treatment, as well as in latency period of 2 years after SRS (p < 0.0447). Eight patients (11.8%) experienced new neurological deficits as a result of adverse radiation effects following SRS.

Conclusions

The results of this study support a role for the use of SRS for symptomatic CMs of the brainstem, as it is relatively safe and appears to reduce rebleeding rates in this high-surgical-risk location.

Free access

Seyed H. Mousavi, Ajay Niranjan, Berkcan Akpinar, Edward A. Monaco III, Jonathan Cohen, Jagdish Bhatnagar, Yue-Fang Chang, Hideyuki Kano, Sakibul Huq, John C. Flickinger and L. Dade Lunsford

OBJECTIVE

During the last 25 years, more than 100,000 patients worldwide with trigeminal neuralgia (TN) have undergone stereotactic radiosurgery (SRS) with a standard dose of radiation. However, the radiobiological effect of radiation is determined by the amount of energy delivered to the tissue (integral dose [ID] = mean dose × target volume) and is directly associated with the nerve volume. Although the trigeminal nerve volume varies among patients with TN, the clinical impact of this variation in delivered energy is unknown. The objective of this study was to evaluate the effect of delivered ID on the outcome of TN radiosurgery.

METHODS

The authors evaluated 155 patients with unilateral TN who had undergone SRS as their initial surgical management over a 13-year period. The authors measured the postganglionic ID within the SRS target and retrospectively stratified patients into 3 groups: low (< 1.4 mJ), medium (1.4–2.7 mJ), and high (> 2.7 mJ) ID. Clinical outcomes, which included pain status (scored using the Barrow Neurological Institute Pain Scale) and sensory dysfunction (scored using the Barrow Neurological Institute Numbness Scale), were evaluated at a median follow-up of 71 months.

RESULTS

Patients who were treated with a medium ID had superior pain relief either with or without medications (p = 0.006). In the medium ID group, the rates of complete pain relief without medications at 1, 3, and 6 years after SRS were 67%, 54%, and 33%, respectively, while the rates in the rest of the cohort were 55%, 36%, and 19%, respectively. Patients given a high ID had a higher rate of post-SRS trigeminal sensory deterioration (p < 0.0001). At 1, 3, and 6 years after SRS, the high ID group had an estimated rate for developing sensory dysfunction of 35%, 45%, and 50%, respectively, while the rates in patients receiving low and medium IDs were 3%, 4%, and 9%, respectively. The optimal clinical outcome (maximum pain relief and minimal trigeminal sensory dysfunction) was obtained in patients who had received a medium ID.

CONCLUSIONS

With current dose selection methods, nerve volume affects long-term clinical outcomes in patients with TN who have undergone SRS. This study suggests that the prescribed SRS dose should be customized for each TN patient based on the nerve volume.