Classic models of language organization posited that separate motor and sensory language foci existed in the inferior frontal gyrus (Broca's area) and superior temporal gyrus (Wernicke's area), respectively, and that connections between these sites (arcuate fasciculus) allowed for auditory-motor interaction. These theories have predominated for more than a century, but advances in neuroimaging and stimulation mapping have provided a more detailed description of the functional neuroanatomy of language. New insights have shaped modern network-based models of speech processing composed of parallel and interconnected streams involving both cortical and subcortical areas. Recent models emphasize processing in “dorsal” and “ventral” pathways, mediating phonological and semantic processing, respectively. Phonological processing occurs along a dorsal pathway, from the posterosuperior temporal to the inferior frontal cortices. On the other hand, semantic information is carried in a ventral pathway that runs from the temporal pole to the basal occipitotemporal cortex, with anterior connections. Functional MRI has poor positive predictive value in determining critical language sites and should only be used as an adjunct for preoperative planning. Cortical and subcortical mapping should be used to define functional resection boundaries in eloquent areas and remains the clinical gold standard. In tracing the historical advancements in our understanding of speech processing, the authors hope to not only provide practicing neurosurgeons with additional information that will aid in surgical planning and prevent postoperative morbidity, but also underscore the fact that neurosurgeons are in a unique position to further advance our understanding of the anatomy and functional organization of language.
Search Results
You are looking at 1 - 10 of 66 items for
- Author or Editor: Edward F. Chang x
- Refine by Access: all x
Edward F. Chang, Kunal P. Raygor, and Mitchel S. Berger
Jonathan D. Breshears, Annette M. Molinaro, and Edward F. Chang
OBJECT
The human ventral sensorimotor cortex (vSMC) is involved in facial expression, mastication, and swallowing, as well as the dynamic and highly coordinated movements of human speech production. However, vSMC organization remains poorly understood, and previously published population-driven maps of its somatotopy do not accurately reflect the variability across individuals in a quantitative, probabilistic fashion. The goal of this study was to describe the responses to electrical stimulation of the vSMC, generate probabilistic maps of function in the vSMC, and quantify the variability across individuals.
METHODS
Photographic, video, and stereotactic MRI data of intraoperative electrical stimulation of the vSMC were collected for 33 patients undergoing awake craniotomy. Stimulation sites were converted to a 2D coordinate system based on anatomical landmarks. Motor, sensory, and speech stimulation responses were reviewed and classified. Probabilistic maps of stimulation responses were generated, and spatial variance was quantified.
RESULTS
In 33 patients, the authors identified 194 motor, 212 sensory, 61 speech-arrest, and 27 mixed responses. Responses were complex, stereotyped, and mostly nonphysiological movements, involving hand, orofacial, and laryngeal musculature. Within individuals, the presence of oral movement representations varied; however, the dorsal-ventral order was always preserved. The most robust motor responses were jaw (probability 0.85), tongue (0.64), lips (0.58), and throat (0.52). Vocalizations were seen in 6 patients (0.18), more dorsally near lip and dorsal throat areas. Sensory responses were spatially dispersed; however, patients' subjective reports were highly precise in localization within the mouth. The most robust responses included tongue (0.82) and lips (0.42). The probability of speech arrest was 0.85, highest 15–20 mm anterior to the central sulcus and just dorsal to the sylvian fissure, in the anterior precentral gyrus or pars opercularis.
CONCLUSIONS
The authors report probabilistic maps of function in the human vSMC based on intraoperative cortical electrical stimulation. These results define the expected range of mapping outcomes in the vSMC of a single individual and shed light on the functional organization of the vSMC supporting speech motor control and nonspeech functions.
Dario J. Englot, Edward F. Chang, and Kurtis I. Auguste
Vagus nerve stimulation (VNS) was approved by the US FDA in 1997 as an adjunctive treatment for medically refractory epilepsy. It is considered for use in patients who are poor candidates for resection or those in whom resection has failed. However, disagreement regarding the utility of VNS in epilepsy continues because of the variability in benefit reported across clinical studies. Moreover, although VNS was approved only for adults and adolescents with partial epilepsy, its efficacy in children and in patients with generalized epilepsy remains unclear. The authors performed the first meta-analysis of VNS efficacy in epilepsy, identifying 74 clinical studies with 3321 patients suffering from intractable epilepsy. These studies included 3 blinded, randomized controlled trials (Class I evidence); 2 nonblinded, randomized controlled trials (Class II evidence); 10 prospective studies (Class III evidence); and numerous retrospective studies. After VNS, seizure frequency was reduced by an average of 45%, with a 36% reduction in seizures at 3–12 months after surgery and a 51% reduction after > 1 year of therapy. At the last follow-up, seizures were reduced by 50% or more in approximately 50% of the patients, and VNS predicted a ≥ 50% reduction in seizures with a main effects OR of 1.83 (95% CI 1.80–1.86). Patients with generalized epilepsy and children benefited significantly from VNS despite their exclusion from initial approval of the device. Furthermore, posttraumatic epilepsy and tuberous sclerosis were positive predictors of a favorable outcome. In conclusion, VNS is an effective and relatively safe adjunctive therapy in patients with medically refractory epilepsy not amenable to resection. However, it is important to recognize that complete seizure freedom is rarely achieved using VNS and that a quarter of patients do not receive any benefit from therapy.
Alfredo Quinones-Hinojosa, Edward F. Chang, and Michael W. McDermott
Object
Meningiomas arising from the falcotentorial junction are rare. As a result, their clinical presentation and surgical management are not well described. During the past 3 years, the authors have treated six patients with falcotentorial meningiomas.
Methods
Most patients presented with symptoms related to raised intracranial pressure, including headaches, papilledema, and visual and gait disturbances. Magnetic resonance imaging revealed a smooth, oval, or round mass, which was typically homogeneously enhancing. Angiography was useful in evaluating arterial supply for embolization, when possible, and determining the status of venous collateral supply and sinus patency. The authors detail the surgical technique used in all six patients. Postoperatively, patients experienced transient cortical blindness, which in all cases spontaneously resolved during the course of several days to weeks. They provide a comprehensive description of the presentation and surgical management of falcotentorial meningiomas.
Conclusions
An excellent outcome can be expected when surgery is predicated on detailed preoperative neuroimaging and knowledge of the nuances of the surgical technique.
Vincent Y. Wang, Edward F. Chang, and Nicholas M. Barbaro
Focal cortical dysplasia (FCD) is found in approximately one-half of patients with medically refractory epilepsy. These lesions may involve only mild disorganization of the cortex, but they may also contain abnormal neuronal elements such as balloon cells. Advances in neuroimaging have allowed better identification of these lesions, and thus more patients have become surgical candidates. Molecular biology techniques have been used to explore the genetics and pathophysiological characteristics of FCD. Data from surgical series have shown that surgery often results in significant reduction or cessation of seizures, especially if the entire lesion is resected.
G. Evren Keles, Edward F. Chang, Kathleen R. Lamborn, Tarik Tihan, Chih-Ju Chang, Susan M. Chang, and Mitchel S. Berger
Object
To investigate the prognostic significance of the volumetrically assessed extent of resection on time to tumor progression (TTP), overall survival (OS), and tumor recurrence patterns, the authors retrospectively analyzed preoperative and postoperative tumor volumes in 102 adult patients from the time of the initial resection of a hemispheric anaplastic astrocytoma (AA).
Methods
The quantification of tumor volumes was based on a previously described method involving computerized analysis of magnetic resonance (MR) images. Analysis of contrast-enhancing tumor volumes on T1-weighted MR images was conducted for 67 patients who had contrast-enhancing tumors. Measurements of T2 hyperintensity were obtained for all 102 patients in the study.
The presence or absence of preresection enhancement, actual volume of this enhancement, and the percentage of preoperative enhancement as it relates to the total T2 tumor volume did not have a statistically significant relationship to TTP or OS. In addition to age, the volume of residual disease measured on T2-weighted MR images was the most significant predictor of TTP (p < 0.001), and residual contrast-enhancing tumor volume was the most significant predictor of OS (p = 0.003) on multivariate analysis. In contrast to low-grade gliomas, there was no statistically significant relationship between the extent of resection and histological characteristics at the time of recurrence, that is, tumor Grade III compared with Grade IV.
Conclusions
Data from this retrospective analysis of a histologically uniform group of hemispheric AAs treated in the MR imaging era suggest that residual tumor volumes, as documented on postoperative imaging studies, may be a prognostic factor for TTP and OS for this patient population.
Anthony T. Lee, John F. Burke, Pranathi Chunduru, Annette M. Molinaro, Robert Knowlton, and Edward F. Chang
OBJECTIVE
Recent trials for temporal lobe epilepsy (TLE) highlight the challenges of investigating surgical outcomes using randomized controlled trials (RCTs). Although several reviews have examined seizure-freedom outcomes from existing data, there is a need for an overall seizure-freedom rate estimated from level I data as investigators consider other methods besides RCTs to study outcomes related to new surgical interventions.
METHODS
The authors performed a systematic review and meta-analysis of the 3 RCTs of TLE in adults and report an overall surgical seizure-freedom rate (Engel class I) composed of level I data. An overall seizure-freedom rate was also collected from level II data (prospective cohort studies) for validation. Eligible studies were identified by filtering a published Cochrane meta-analysis of epilepsy surgery for RCTs and prospective studies, and supplemented by searching indexed terms in MEDLINE (January 1, 2012–April 1, 2018). Retrospective studies were excluded to minimize heterogeneity in patient selection and reporting bias. Data extraction was independently reverified and pooled using a fixed-effects model. The primary outcome was overall seizure freedom following surgery. The historical benchmark was applied in a noninferiority study design to compare its power to a single-study cohort.
RESULTS
The overall rate of seizure freedom from level I data was 72.4% (55/76 patients, 3 RCTs), which was nearly identical to the overall seizure-freedom rate of 71.7% (1325/1849 patients, 18 studies) from prospective cohorts (z = 0.134, p = 0.89; z-test). Seizure-freedom rates from level I and II studies were consistent over the years of publication (R2 < 0.01, p = 0.73). Surgery resulted in markedly improved seizure-free outcomes compared to medical management (RR 10.82, 95% CI 3.93–29.84, p < 0.01; 2 RCTs). Noninferiority study designs in which the historical benchmark was used had significantly higher power at all difference margins compared to using a single cohort alone (p < 0.001, Bonferroni’s multiple comparison test).
CONCLUSIONS
The overall rate of seizure freedom for temporal lobe surgery is approximately 70% for medically refractory epilepsy. The small sample size of the RCT cohort underscores the need to move beyond standard RCTs for epilepsy surgery. This historical seizure-freedom rate may serve as a useful benchmark to guide future study designs for new surgical treatments for refractory TLE.
Edward F. Chang, Matthew B. Potts, G. Evren Keles, Kathleen R. Lamborn, Susan M. Chang, Nicholas M. Barbaro, and Mitchel S. Berger
Object
Seizures play an important role in the clinical presentation and postoperative quality of life of patients who undergo surgical resection of low-grade gliomas (LGGs). The aim of this study was to identify factors that influenced perioperative seizure characteristics and postoperative seizure control.
Methods
The authors performed a retrospective chart review of all cases involving adult patients who underwent initial surgery for LGGs at the University of California, San Francisco between 1997 and 2003.
Results
Three hundred and thirty-two cases were included for analysis; 269 (81%) of the 332 patients presented with ≥ 1 seizures (generalized alone, 33%; complex partial alone, 16%; simple partial alone, 22%; and combination, 29%). Cortical location and oligodendroglioma and oligoastrocytoma subtypes were significantly more likely to be associated with seizures compared with deeper midline locations and astrocytoma, respectively (p = 0.017 and 0.001, respectively; multivariate analysis). Of the 269 patients with seizures, 132 (49%) had pharmacoresistant seizures before surgery. In these patients, seizures were more likely to be simple partial and to involve the temporal lobe, and the period from seizure onset to surgery was likely to have been longer (p = 0.0005, 0.0089, and 0.006, respectively; multivariate analysis). For the cohort of patients that presented with seizures, 12-month outcome after surgery (Engel class) was as follows: seizure free (I), 67%; rare seizures (II), 17%; meaningful seizure improvement (III), 8%; and no improvement or worsening (IV), 9%. Poor seizure control was more common in patients with longer seizure history (p < 0.001) and simple partial seizures (p = 0.004). With respect to treatment-related variables, seizure control was far more likely to be achieved after gross-total resection than after subtotal resection/biopsy alone (odds ratio 16, 95% confidence interval 2.2–124, p = 0.0064). Seizure recurrence after initial postoperative seizure control was associated with tumor progression (p = 0.001).
Conclusions
The majority of patients with LGG present with seizures; in approximately half of these patients, the seizures are pharmacoresistant before surgery. Postoperatively, > 90% of these patients are seizure free or have meaningful improvement. A shorter history of seizures and gross-total resection appear to be associated with a favorable prognosis for seizure control.
Edward F. Chang, Rodney A. Gabriel, Matthew B. Potts, Mitchel S. Berger, and Michael T. Lawton
Object
Resection of cavernous malformations (CMs) located in functionally eloquent areas of the supratentorial compartment is controversial. Hemorrhage from untreated lesions can result in devastating neurological injury, but surgery has potentially serious risks. We hypothesized that an organized system of approaches can guide operative planning and lead to acceptable neurological outcomes in surgical patients.
Methods
The authors reviewed the presentation, surgery, and outcomes of 79 consecutive patients who underwent microresection of supratentorial CMs in eloquent and deep brain regions (basal ganglia [in 27 patients], sensorimotor cortex [in 23], language cortex [in 3], thalamus [in 6], visual cortex [in 10], and corpus callosum [in 10]). A total of 13 different microsurgical approaches were organized into 4 groups: superficial, lateral transsylvian, medial interhemispheric, and posterior approaches.
Results
The majority of patients (93.7%) were symptomatic. Hemorrhage with resulting focal neurological deficit was the most common presentation in 53 patients (67%). Complete resection, as determined by postoperative MR imaging, was achieved in 76 patients (96.2%). Overall, the functional neurological status of patients improved after microsurgical dissection at the time of discharge from the hospital and at follow-up. At 6 months, 64 patients (81.0%) were improved relative to their preoperative condition and 14 patients (17.7%) were unchanged. Good outcomes (modified Rankin Scale score ≤ 2, living independently) were achieved in 77 patients (97.4%). Multivariate analysis of demographic and surgical factors revealed that preoperative functional status was the only predictor of postoperative modified Rankin Scale score (OR 4.6, p = 0.001). Six patients (7.6%) had transient worsening of neurological examination after surgery, and 1 patient (1.3%) was permanently worse. There was no surgical mortality.
Conclusions
The authors present a system of 13 microsurgical approaches to 6 location targets with 4 general trajectories to facilitate safe access to supratentorial CMs in eloquent brain regions. Favorable neurological outcomes following microsurgical resection justify an aggressive surgical attitude toward these lesions.