Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Eberval Gadelha Figueiredo x
Clear All Modify Search
Restricted access

Rungsak Siwanuwatn, Pushpa Deshmukh, Eberval Gadelha Figueiredo, Neil R. Crawford, Robert F. Spetzler and Mark C. Preul

Object

The authors quantitatively assessed the working areas and angles of attack associated with retrosigmoid (RS), combined petrosal (CP), and transcochlear (TC) craniotomies.

Methods

Four silicone-injected cadaveric heads were bilaterally dissected using three approaches progressing from the least to the most extensive. Working areas were determined using the Optotrak 3020 system on the upper and middle thirds of the petroclivus and brainstem. Angles of attack were studied using the Elekta SurgiScope at the Dorello canal and the origin of the anterior inferior cerebellar artery (AICA).

The TC approach provided significantly greater (p < 0.001) working areas at the petroclivus (755.6 ± 130.1 mm2) and brainstem (399.3 ± 68.2 mm2) than the CP (354.1 ± 60.3 and 289.7 ± 69.9 mm2) and RS approaches (292.4 ± 59.9, 177.2 ± 54.2 mm2, respectively). The brainstem working area associated with the CP approach was significantly larger (p < 0.001) than that associated with the RS route. There was no difference in the petroclival working area comparing the CP and RS approaches (p = 0.149). The horizontal and vertical angles of attack achieved using the TC approach were wider than those of the CP and RS at the Dorello canal and the origin of the AICA (p < 0.001).

Conclusions

The CP approach offers a more extensive working area than the RS for lesions involving the anterolateral surface of the brainstem, but not for petroclival lesions. The TC approach provides the widest corridor, improving the working area and angle of attack to both areas, but hearing must be sacrificed and the facial nerve is at risk.

Restricted access

Almir Ferreira de Andrade, Eberval Gadelha Figueiredo, Robson Luis Oliveira de Amorim, Wellingson S. Paiva, Guilherme Lepski and Manoel Jacobsen Teixeira

Full access

Jose Weber Vieira de Faria, Manoel Jacobsen Teixeira, Leonardo de Moura Sousa Júnior, Jose Pinhata Otoch and Eberval Gadelha Figueiredo

OBJECTIVE

The authors sought to construct, implement, and evaluate an interactive and stereoscopic resource for teaching neuroanatomy, accessible from personal computers.

METHODS

Forty fresh brains (80 hemispheres) were dissected. Images of areas of interest were captured using a manual turntable and processed and stored in a 5337-image database. Pedagogic evaluation was performed in 84 graduate medical students, divided into 3 groups: 1 (conventional method), 2 (interactive nonstereoscopic), and 3 (interactive and stereoscopic). The method was evaluated through a written theory test and a lab practicum.

RESULTS

Groups 2 and 3 showed the highest mean scores in pedagogic evaluations and differed significantly from Group 1 (p < 0.05). Group 2 did not differ statistically from Group 3 (p > 0.05). Size effects, measured as differences in scores before and after lectures, indicate the effectiveness of the method. ANOVA results showed significant difference (p < 0.05) between groups, and the Tukey test showed statistical differences between Group 1 and the other 2 groups (p < 0.05). No statistical differences between Groups 2 and 3 were found in the practicum. However, there were significant differences when Groups 2 and 3 were compared with Group 1 (p < 0.05).

CONCLUSIONS

The authors conclude that this method promoted further improvement in knowledge for students and fostered significantly higher learning when compared with traditional teaching resources.

Restricted access

Eberval Gadelha Figueiredo, Joseph M. Zabramski, Pushpa Deshmukh, Neil R. Crawford, Mark C. Preul and Robert F. Spetzler

Object

The management of wide-necked, giant, or unsuccessfully coil-treated basilar apex aneurysms requires a wide exposure, for both working area and linear visualization of the basilar artery (BA). Cranial-based approaches, such as the transcavernous approach, have been proposed to deal with such aneurysms; whether abbreviated forms of this approach might provide similar exposure remains controversial. The authors examine this issue quantitatively.

Methods

Four alcohol-preserved cadaveric heads injected with pigmented silicone were prepared for bilateral dissection. After completing an orbitozygomatic craniotomy, the surgeons worked in a reverse direction, performing the transcavernous approach in five steps: 1) posterior clinoidectomy; 2) cavernous sinus opening; 3) anterior clinoidectomy; 4) cutting of the distal dural ring; and 5) cutting of the proximal dural ring.

Performing the complete transcavernous approach significantly increased the working area and linear exposure of the BA compared with abbreviated forms of the approach (p < 0.05). Opening the roof of the cavernous sinus significantly increased the working area compared with posterior clinoidectomy alone (p = 0.014); however, additional gains in exposure required completing the transcavernous approach. Resection of the anterior clinoid process combined with opening of only the distal dural ring did not significantly increase the working area or linear exposure of the BA.

Conclusions

The complete transcavernous approach significantly increases the working area and linear exposure of the BA compared with the more conservative forms of approach.

Restricted access

Nícollas Nunes Rabelo, Bruno Braga Sisnando da Costa, Manoel Jacobsen Teixeira and Eberval Gadelha Figueiredo

Full access

Eberval Gadelha Figueiredo, Manoel J. Teixeira, Robert F. Spetzler and Mark C. Preul

Restricted access

Raghu Samala, Kanwaljeet Garg, Shweta Kedia and Guru Dutta Satyarthee

Free access

Mauricio Mandel, Carlo Emanuel Petito, Rafael Tutihashi, Wellingson Paiva, Suzana Abramovicz Mandel, Fernando Campos Gomes Pinto, Almir Ferreira de Andrade, Manoel Jacobsen Teixeira and Eberval Gadelha Figueiredo

OBJECTIVE

Advances in video and fiber optics since the 1990s have led to the development of several commercially available high-definition neuroendoscopes. This technological improvement, however, has been surpassed by the smartphone revolution. With the increasing integration of smartphone technology into medical care, the introduction of these high-quality computerized communication devices with built-in digital cameras offers new possibilities in neuroendoscopy. The aim of this study was to investigate the usefulness of smartphone-endoscope integration in performing different types of minimally invasive neurosurgery.

METHODS

The authors present a new surgical tool that integrates a smartphone with an endoscope by use of a specially designed adapter, thus eliminating the need for the video system customarily used for endoscopy. The authors used this novel combined system to perform minimally invasive surgery on patients with various neuropathological disorders, including cavernomas, cerebral aneurysms, hydrocephalus, subdural hematomas, contusional hematomas, and spontaneous intracerebral hematomas.

RESULTS

The new endoscopic system featuring smartphone-endoscope integration was used by the authors in the minimally invasive surgical treatment of 42 patients. All procedures were successfully performed, and no complications related to the use of the new method were observed. The quality of the images obtained with the smartphone was high enough to provide adequate information to the neurosurgeons, as smartphone cameras can record images in high definition or 4K resolution. Moreover, because the smartphone screen moves along with the endoscope, surgical mobility was enhanced with the use of this method, facilitating more intuitive use. In fact, this increased mobility was identified as the greatest benefit of the use of the smartphone-endoscope system compared with the use of the neuroendoscope with the standard video set.

CONCLUSIONS

Minimally invasive approaches are the new frontier in neurosurgery, and technological innovation and integration are crucial to ongoing progress in the application of these techniques. The use of smartphones with endoscopes is a safe and efficient new method of performing endoscope-assisted neurosurgery that may increase surgeon mobility and reduce equipment costs.