Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Dwight C. German x
Clear All Modify Search
Restricted access

Cole A. Giller, Hanli Liu, Prem Gurnani, Sundar Victor, Umar Yazdani and Dwight C. German

Object. The authors have developed an intracranial near-infrared (NIR) probe that analyzes the scattering of light emitted from its tip to measure the optical properties of cerebral tissue. Despite its success in distinguishing gray matter from white matter in humans during stereotactic surgery, the limits of this instrument's resolution remain unclear. In this study, the authors determined the spatial resolution of this new probe by using a rodent model supplemented with phantom measurements and computer simulation.

Methods. A phantom consisting of Intralipid and gelatin was constructed to resemble a layer of white matter overlying a layer of gray matter. Near-infrared measurements were obtained as the probe was inserted through the gray—white matter transition. A computer simulation of NIR measurements through a gray—white matter transition was also performed using Monte Carlo techniques. The NIR probe was then used to study 19 tracks from the cortical surface through the corpus callosum in an in vivo rodent preparation. The animals were killed and histological sections through the tracks were obtained.

Data from the phantom models and computer simulations showed that the NIR probe samples a volume of tissue extending 1 to 1.5 mm in front of the probe tip (this distance is termed the “lookthrough” distance). Measurements obtained from an NIR probe passing through a thin layer of white matter consisted of an initial segment of increasing values, a maximum (peak) value, and a trailing segment of decreasing values. The length of the initial segment is the lookthrough distance, the position of the peak indicates the location of the superficial white matter boundary, and the length of the trailing segment is the thickness of the layer.

These considerations were confirmed in experiments with rodents. All tracks passed through the corpus callosum, which was demonstrated as a broad peak on each NIR graph. The position of the dorsal boundary of the corpus callosum and its width (based on histological measurements) correlated well with the peak of the NIR curve and its trailing segment, respectively. The initial segments correlated well with estimates of the lookthrough distance. Five of the tracks transected the smaller anterior commissure (diameter 0.2 mm), producing a narrow NIR peak at the correct depth.

Conclusions. Data in this study confirm that the NIR probe can reliably detect and measure the thickness of layers of white matter as thin as 0.2 mm. Such resolution should be adequate to detect larger structures of interest encountered during stereotactic surgery in humans.

Restricted access

Cole A. Giller, Hanli Liu, Dwight C. German, Dheerendra Kashyap and Richard B. Dewey Jr

Object

The authors previously developed an optical stereotactic probe employing near-infrared (NIR) spectroscopy to provide intraoperative localization by distinguishing gray matter from white matter. In the current study they extend and further validate this technology.

Methods

Near-infrared probes were inserted 203 times during 138 procedures for movement disorders. Detailed validation with postoperative imaging was obtained for 121 of these procedures and with microelectrode recording (MER) for 30 procedures. Probes were constructed to interrogate tissue perpendicular to the probe path and to incorporate hollow channels for microelectrodes, deep brain stimulation (DBS) electrodes, and other payloads.

Results

The NIR data were highly correlated to imaging and MER recordings for thalamic targets. The NIR data were highly sensitive but less specific relative to imaging for subthalamic targets, confirming the ability to detect the subthalamic nucleus and to provide warnings of inaccurate localization. The difference between the NIR- and MER-detected midpoints of the subthalamic nucleus along the chosen tracks was 1.1 ± 1.2 mm (SD). Data obtained during insertion and withdrawal of the NIR probe suggested that DBS electrodes may push their targets ahead of their paths. There was one symptomatic morbidity. Detailed NIR data could be obtained from a 7-cm track in less than 10 minutes.

Conclusions

The NIR probe is a straightforward, quick, and robust tool for intraoperative localization during functional neurosurgery. Potential future applications include localization of targets for epilepsy and psychiatric disorders, and incorporation of NIR guidance into probes designed to convey various payloads.

Restricted access

Oral Presentations

2010 AANS Annual Meeting Philadelphia, Pennsylvania May 1–5, 2010