Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Donald W. Gross x
Clear All Modify Search
Restricted access

Donald W. Gross, Isabelle Merlet, Warren Boling and Jean Gotman

Object. When considering resection of epileptic generators near the central sulcus, it is essential to define the spatial relationship between the epileptic generator and the primary sensorimotor hand area. In this study, the authors assessed the accuracy of dipole modeling of electroencephalographic spikes and median nerve somatosensory evoked potentials (SSEPs) in defining this relationship preoperatively and noninvasively.

Methods. Epileptic spikes and SSEPs in patients with focal central area epilepsy were represented by dipole models coregistered onto global magnetic resonance images. In patients who underwent surgery, spike dipoles were also compared with findings of electrocorticography (ECoG) and with the resection area. To improve the accuracy of the dipole models, anatomical landmarks of the hand area were used to assess the error in SSEP dipole location, and this error measure was used to correct the location of spike dipoles.

Five patients with central epilepsy were studied, three of whom underwent ECoG-guided surgical resections. The location of SSEP dipoles correlated well with anatomical landmarks of the primary sensory hand area. The relative position of the spike and SSEP dipoles correlated well with the patients' ictal symptoms, ECoG findings, and the location of the epileptic focus (as defined by the resection cavity in patients who became seizure free postoperatively). Corrected spike dipoles were located even closer to the resection cavity.

Conclusions. The calculation of the relative location of spike and SSEP dipoles is a simple noninvasive method of determining the relationship between the primary hand area and an epileptic focus in the central area. The spatial resolution of this technique can be further improved using easily identifiable anatomical landmarks.

Restricted access

Cameron A. Elliott, Hayden Danyluk, Keith E. Aronyk, Karolyn Au, B. Matt Wheatley, Donald W. Gross, Tejas Sankar and Christian Beaulieu

OBJECTIVE

Diffusion tensor imaging (DTI) tractography is commonly used in neurosurgical practice but is largely limited to the preoperative setting. This is due primarily to image degradation caused by susceptibility artifact when conventional single-shot (SS) echo-planar imaging (EPI) DTI (SS-DTI) is acquired for open cranial, surgical position intraoperative DTI (iDTI). Readout-segmented (RS) EPI DTI (RS-DTI) has been reported to reduce such artifact but has not yet been evaluated in the intraoperative MRI (iMRI) environment. The authors evaluated the performance of RS versus SS EPI for DTI of the human brain in the iMRI setting.

METHODS

Pre- and intraoperative 3-T 3D T1-weighted and 2D multislice RS-iDTI (called RESOLVE [readout segmentation of long variable echo-trains] on the Siemens platform) and SS-iDTI images were acquired in 22 adult patients undergoing intraaxial iMRI resections for suspected low-grade glioma (14; 64%), high-grade glioma (7; 32%), or focal cortical dysplasia. Regional susceptibility artifact, anatomical deviation relative to T1-weighted imaging, and tractographic output for surgically relevant tracts were compared between iDTI sequences as well as the intraoperative tract shifts from preoperative DTI.

RESULTS

RS-iDTI resulted in qualitatively less regional susceptibility artifact (resection cavity, orbitofrontal and anterior temporal cortices) and mean anatomical deviation in regions most prone to susceptibility artifact (RS-iDTI 2.7 ± 0.2 vs SS-iDTI 7.5 ± 0.4 mm) compared to SS-iDTI. Although tract reconstruction success did not significantly differ by DTI method, susceptibility artifact–related tractography failure (of at least 1 surgically relevant tract) occurred for SS-iDTI in 8/22 (36%) patients, and in 5 of these 8 patients RS-iDTI permitted successful reconstruction. Among cases with successful tractography for both sequences, maximal intersequence differences were substantial (mean 9.5 ± 5.7 mm, range −27.1 to 18.7 mm).

CONCLUSIONS

RS EPI enables higher quality and more accurate DTI for surgically relevant tractography of major white matter tracts in intraoperative, open cranium neurosurgical applications at 3 T.

Restricted access

Oral Presentations

2010 AANS Annual Meeting Philadelphia, Pennsylvania May 1–5, 2010