Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Dimitriy Kondrashov x
Clear All Modify Search
Full access

Calvin C. Kuo, Audrey Martin, Connor Telles, Jeremi Leasure, Alex Iezza, Christopher Ames and Dimitriy Kondrashov

OBJECTIVE

The goal of this study was to investigate the forces placed on posterior fusion instrumentation by 3 commonly used intraoperative techniques to restore lumbar lordosis: 1) cantilever bending; 2) in situ bending; and 3) compression and/or distraction of screws along posterior fusion rods.

METHODS

Five cadaveric torsos were instrumented with pedicle screws at the L1–5 levels. Specimens underwent each of the 3 lordosis restoration procedures. The pedicle screw pullout force was monitored in real time via strain gauges that were mounted unilaterally at each level. The degree of correction was noted through fluoroscopic imaging. The peak loads experienced on the screws during surgery, total demand on instrumentation, and resting loads after corrective maneuvers were measured.

RESULTS

A mean overall lordotic correction of 10.9 ± 4.7° was achieved. No statistically significant difference in lordotic correction was observed between restoration procedures. In situ bending imparted the largest loads intraoperatively with an average of 1060 ± 599.9 N, followed by compression/distraction (971 ± 534.1 N) and cantilever bending (705 ± 413.0 N). In situ bending produced the largest total demand and postoperative loads at L-1 (1879 ± 1064.1 and 487 ± 118.8 N, respectively), which were statistically higher than cantilever bending and compression/distraction (786 ± 272.1 and 138 ± 99.2 N, respectively).

CONCLUSIONS

In situ bending resulted in the highest mechanical demand on posterior lumbar instrumentation, as well as the largest postoperative loads at L-1. These results suggest that the forces generated with in situ bending indicate a greater chance of intraoperative instrumentation failure and postoperative proximal pedicle screw pullout when compared with cantilever bending and/or compression/distraction options. The results are aimed at optimizing correction and fusion strategies in lordosis restoration cases.

Full access

Jacqueline Nguyen, Bryant Chu, Calvin C. Kuo, Jeremi M. Leasure, Christopher Ames and Dimitriy Kondrashov

OBJECTIVE

Anterior cervical discectomy and fusion (ACDF) with or without partial uncovertebral joint resection (UVR) and posterior keyhole foraminotomy are established operative procedures to treat cervical disc degeneration and radiculopathy. Studies have demonstrated reliable results with each procedure, but none have compared the change in neuroforaminal area between indirect and direct decompression techniques. The purpose of this study was to determine which cervical decompression method most consistently increases neuroforaminal area and how that area is affected by neck position.

METHODS

Eight human cervical functional spinal units (4 each of C5–6 and C6–7) underwent sequential decompression. Each level received the following surgical treatment: bilateral foraminotomy, ACDF, ACDF + partial UVR, and foraminotomy + ACDF. Multidirectional pure moment flexibility testing combined with 3D C-arm imaging was performed after each procedure to measure the minimum cross-sectional area of each foramen in 3 different neck positions: neutral, flexion, and extension.

RESULTS

Neuroforaminal area increased significantly with foraminotomy versus intact in all positions. These area measurements did not change in the ACDF group through flexion-extension. A significant decrease in area was observed for ACDF in extension (40 mm2) versus neutral (55 mm2). Foraminotomy + ACDF did not significantly increase area compared with foraminotomy in any position. The UVR procedure did not produce any changes in area through flexion-extension.

CONCLUSIONS

All procedures increased neuroforaminal area. Foraminotomy and foraminotomy + ACDF produced the greatest increase in area and also maintained the area in extension more than anterior-only procedures. The UVR procedure did not significantly alter the area compared with ACDF alone. With a stable cervical spine, foraminotomy may be preferable to directly decompress the neuroforamen; however, ACDF continues to play an important role for indirect decompression and decompression of more centrally located herniated discs. These findings pertain to bony stenosis of the neuroforamen and may not apply to soft disc herniation. The key points of this study are as follows. Both ACDF and foraminotomy increase the foraminal space. Foraminotomy was most successful in maintaining these increases during neck motion. Partial UVR was not a significant improvement over ACDF alone. Foraminotomy may be more efficient at decompressing the neuroforamen. Results should be taken into consideration only with stable spines.

Restricted access

Derek P. Lindsey, Robin Parrish, Mukund Gundanna, Jeremi Leasure, Scott A. Yerby and Dimitriy Kondrashov

OBJECTIVE

Bilateral symptoms have been reported in 8%–35% of patients with sacroiliac (SI) joint dysfunction. Stabilization of a single SI joint may significantly alter the stresses on the contralateral SI joint. If the contralateral SI joint stresses are significantly increased, degeneration may occur; alternatively, if the stresses are significantly reduced, bilateral stabilization may be unnecessary for patients with bilateral symptoms. The biomechanical effects of 1) unilateral stabilization on the contralateral SI joint and 2) bilateral stabilization on both SI joints are currently unknown. The objectives of this study were to characterize bilateral SI joint range of motion (ROM) and evaluate and compare the biomechanical effects of unilateral and bilateral implant placement for SI joint fusion.

METHODS

A lumbopelvic model (L5–pelvis) was used to test the ROM of both SI joints in 8 cadavers. A single-leg stance setup was used to load the lumbar spine and measure the ROM of each SI joint in flexion-extension, lateral bending, and axial rotation. Both joints were tested 1) while intact, 2) after unilateral stabilization, and 3) after bilateral stabilization. Stabilization consisted of lateral transiliac placement of 3 triangular titanium plasma-sprayed (TPS) implants.

RESULTS

Intact testing showed that during single-leg stance the contralateral SI joint had less ROM in flexion-extension (27%), lateral bending (32%), and axial rotation (69%) than the loaded joint. Unilateral stabilization resulted in significant reduction of flexion-extension ROM (46%) on the treated side; no significant ROM changes were observed for the nontreated side. Bilateral stabilization resulted in significant reduction of flexion-extension ROM of the primary (45%) and secondary (75%) SI joints.

CONCLUSIONS

This study demonstrated that during single-leg loading the ROMs for the stance (loaded) and swing (unloaded) SI joints are significantly different. Unilateral stabilization for SI joint dysfunction significantly reduces the ROM of the treated side, but does not significantly reduce the ROM of the nontreated contralateral SI joint. Bilateral stabilization is necessary to significantly reduce the ROM for both SI joints.

Full access

Aaron J. Clark, Jessica A. Tang, Jeremi M. Leasure, Michael E. Ivan, Dimitriy Kondrashov, Jenni M. Buckley, Vedat Deviren and Christopher P. Ames

Object

Reconstruction after total sacrectomy is a critical component of malignant sacral tumor resection, permitting early mobilization and maintenance of spinal pelvic alignment. However, implant loosening, graft migration, and instrumentation breakage remain major problems. Traditional techniques have used interiliac femoral allograft, but more modern methods have used fibular or cage struts from the ilium to the L-5 endplate or sacral body replacement with transiliac bars anchored to cages to the L-5 endplate. This study compares the biomechanical stability under gait-simulating fatigue loading of the 3 current methods.

Methods

Total sacrectomy was performed and reconstruction was completed using 3 different constructs in conjunction with posterior spinal screw rod instrumentation from L-3 to pelvis: interiliac femur strut allograft (FSA); L5–iliac cage struts (CSs); and S-1 body replacement expandable cage (EC). Intact lumbar specimens (L3–sacrum) were tested for flexion-extension range of motion (FE-ROM), axial rotation ROM (AX-ROM), and lateral bending ROM (LB-ROM). Each instrumented specimen was compared with its matched intact specimen to generate an ROM ratio. Fatigue testing in compression and flexion was performed using a custom-designed long fusion gait model.

Results

Compared with intact specimen, the FSA FE-ROM ratio was 1.22 ± 0.60, the CS FE-ROM ratio was significantly lower (0.37 ± 0.12, p < 0.001), and EC was lower still (0.29 ± 0.14, p < 0.001; values are expressed as the mean ± SD). The difference between CS and EC in FE-ROM ratio was not significant (p = 0.83). There were no differences in AX-ROM or LB-ROM ratios (p = 0.77 and 0.44, respectively). No failures were noted on fatigue testing of any EC construct (250,000 cycles). This was significantly improved compared with FSA (856 cycles, p < 0.001) and CS (794 cycles, p < 0.001).

Conclusions

The CS and EC appear to be significantly more stable constructs compared with FSA with FE-ROM. The 3 constructs appear to be equal with AX-ROM and LB-ROM. Most importantly, EC appears to be significantly more resistant to fatigue compared with FSA and CS. Reconstruction of the load transfer mechanism to the pelvis via the L-5 endplate appears to be important in maintenance of alignment after total sacrectomy reconstruction.