Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Diego M. Morales x
Clear All Modify Search
Restricted access

Manish N. Shah, Jeffrey R. Leonard, Gabrielle Inder, Feng Gao, Michael Geske, Devon H. Haydon, Melvin E. Omodon, John Evans, Diego Morales, Ralph G. Dacey, Matthew D. Smyth, Michael R. Chicoine and David D. Limbrick

Object

This study describes the pediatric experience with a dual-multifunction-room IMRIS 1.5-T intraoperative magnetic resonance imaging (iMRI) suite and analyzes its impact on clinical variables associated with neurosurgical resection of intracranial lesions, including safety and efficacy.

Methods

Since the inception of the iMRI–guided resection program in April 2008 at both Barnes-Jewish and St. Louis Children's Hospital, a prospective database recorded the clinical variables associated with demographics and outcome with institutional review board approval. A similarly approved retrospective database was constructed from February 2006 to March 2010 for non–iMRI resections. These databases were retrospectively reviewed for clinical variables associated with resection of pediatric (age 20 months–21 years) intracranial lesions including brain tumors and focal cortical dysplasia. Patient demographics, operative time, estimated blood loss, additional resection, length of stay, pathology, and complications were analyzed.

Results

The authors found that 42 iMRI–guided resections were performed, whereas 103 conventional resections had been performed without the iMRI. The mean patient age was 10.5 years (range 20 months–20 years) in the iMRI group and 9.8 years (range 2–21 years) in the conventional group (p = 0.41). The mean duration of surgery was 350 minutes in the iMRI group and 243 minutes in the conventional group (p < 0.0001). The mean hospital stay was 8.2 days in the iMRI group, and 6.6 days in the conventional group, and this trended toward significance (p = 0.05). In the first 2 weeks postoperatively, there were 8 reoperations (7.77%) in the conventional group compared with none in the iMRI group, which was not significant in a 2-tailed test (p = 0.11) but trended toward significance in a 1-tailed test (p = 0.06). The significant complications included reoperation for hydrocephalus or infection: 6.8% (conventional) versus 4.8% (iMRI).

Conclusions

Intraoperative MR imaging–guided resections resulted in a trend toward reduction in the need for repeat surgery in the immediate 2-week postoperative period compared with conventional pediatric neurosurgical resections for tumor or focal cortical dysplasia. Although there is an increased operative time, the iMRI suite offers a comparable safety and efficacy profile while potentially reducing the per-case cost by diminishing the need for early reoperation.

Restricted access

Albert M. Isaacs, Joshua S. Shimony, Diego M. Morales, Leandro Castaneyra-Ruiz, Alexis Hartman, Madison Cook, Christopher D. Smyser, Jennifer Strahle, Matthew D. Smyth, Yan Yan, James P. McAllister II, Robert C. McKinstry and David D. Limbrick Jr.

OBJECTIVE

Traditionally, diffusion MRI (dMRI) has been performed in parallel with high-resolution conventional MRI, which requires long scan times and may require sedation or general anesthesia in infants and young children. Conversely, fast brain MRI permits image acquisition without the need for sedation, although its short pulse sequences, susceptibility to motion artifact, and contrast resolution have limited its use to assessing ventricular size or major structural variations. Here, the authors demonstrate the feasibility of leveraging a 3-direction fast brain MRI protocol to obtain reliable dMRI measures.

METHODS

Fast brain MRI with 3-direction dMRI was performed in infants and children before and after hydrocephalus treatment. Regions of interest in the posterior limbs of the internal capsules (PLICs) and the genu of the corpus callosum (gCC) were drawn on diffusion-weighted images, and mean diffusivity (MD) data were extracted. Ventricular size was determined by the frontal occipital horn ratio (FOHR). Differences between and within groups pre- and posttreatment, and FOHR-MD correlations were assessed.

RESULTS

Of 40 patients who met inclusion criteria (median age 27.5 months), 15 (37.5%), 17 (42.5%), and 8 (20.0%) had posthemorrhagic hydrocephalus (PHH), congenital hydrocephalus (CH), or no intracranial abnormality (controls), respectively. A hydrocephalus group included both PHH and CH patients. Prior to treatment, the FOHR (p < 0.001) and PLIC MD (p = 0.027) were greater in the hydrocephalus group than in the controls. While the mean gCC MD in the hydrocephalus group (1.10 × 10−3 mm2/sec) was higher than that of the control group (0.98), the difference was not significant (p = 0.135). Following a median follow-up duration of 14 months, decreases in FOHR, PLIC MD, and gCC MD were observed in the hydrocephalus group and were similar to those in the control group (p = 0.107, p = 0.702, and p = 0.169, respectively). There were no correlations identified between FOHR and MDs at either time point.

CONCLUSIONS

The utility of fast brain MRI can be extended beyond anatomical assessments to obtain dMRI measures. A reduction in PLIC and gCC MD to levels similar to those of controls was observed within 14 months following shunt surgery for hydrocephalus in PHH and CH infants. Further studies are required to assess the role of fast brain dMRI for assessing clinical outcomes in pediatric hydrocephalus patients.