Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: David Zurakowski x
  • All content x
Clear All Modify Search
Restricted access

Eun-Hyoung Park, Per Kristian Eide, David Zurakowski, and Joseph R. Madsen

Object

The pathophysiology of normal pressure hydrocephalus (NPH), and the related problem of patient selection for treatment of this condition, have been of great interest since the description of this seemingly paradoxical condition nearly 50 years ago. Recently, Eide has reported that measurements of the amplitude of the intracranial pressure (ICP) can both positively and negatively predict response to CSF shunting. Specifically, the fraction of time spent in a “high amplitude” (> 4 mm Hg) state predicted response to shunting, which may represent a marker for hydrocephalic pathophysiology. Increased ICP amplitude might suggest decreased brain compliance, meaning a static measure of a pressure-volume ratio. Recent studies of canine data have shown that the brain compliance can be described as a frequency-dependent function. The normal canine brain seems to show enhanced ability to absorb the pulsations around the heart rate, quantified as a cardiac pulsation absorbance (CPA), with properties like a notch filter in engineering. This frequency dependence of the function is diminished with development of hydrocephalus in dogs. In this pilot study, the authors sought to determine whether frequency dependence could be observed in humans, and whether the frequency dependence would be any different in epochs with high ICP amplitude compared with epochs of low ICP amplitude.

Methods

Systems analysis was applied to arterial blood pressure (ABP) and ICP waveforms recorded from 10 patients undergoing evaluations of idiopathic NPH to calculate a time-varying transfer function that reveals frequency dependence and CPA, the measure of frequency-dependent compliance previously used in animal experiments. The ICP amplitude was also calculated in the same samples, so that epochs with high (> 4 mm Hg) versus low (≤ 4 mm Hg) amplitude could be compared in CPA and transfer functions.

Results

Transfer function analysis for the more “normal” epochs with low amplitude exhibits a dip or notch in the physiological frequency range of the heart rate, confirming in humans the pulsation absorber phenomenon previously observed in canine studies. Under high amplitude, however, the dip in the transfer function is absent. An inverse relationship between CPA index and ICP amplitude is evident and statistically significant. Thus, elevated ICP amplitude indicates decreased performance of the human pulsation absorber.

Conclusions

The results suggest that the human intracranial system shows frequency dependence as seen in animal experiments. There is an inverse relationship between CPA index and ICP amplitude, indicating that higher amplitudes may occur with a reduced performance of the pulsation absorber. Our findings show that frequency dependence can be observed in humans and imply that reduced frequency-dependent compliance may be responsible for elevated ICP amplitude observed in patients who respond to CSF shunting.

Restricted access

Eun-Hyoung Park, Stephen Dombrowski, Mark Luciano, David Zurakowski, and Joseph R. Madsen

Object

Analysis of waveform data in previous studies suggests that the pulsatile movement of CSF may play a role in attenuating strong arterial pulsations entering the cranium, and its effectiveness in attenuating these pulsations may be altered by changes in intracranial pressure (ICP). These findings were obtained in studies performed in canines with normal anatomy of the CSF spaces. How then would pulsation absorbance respond to changes in CSF movement under obstructive conditions such as the development of hydrocephalus? In the present study, chronic obstructive hydrocephalus was induced by the injection of cyanoacrylate gel into the fourth ventricle of canines, and pulsation absorbance was compared before and after hydrocephalus induction.

Methods

Five animals were evaluated with simultaneous recordings of ICP and arterial blood pressure (ABP) before and at 4 and 12 weeks after fourth ventricle obstruction by cyanoacrylate. To assess how the intracranial system responds to the arterial pulsatile component, ABP and ICP waveforms recorded in a time domain had to be analyzed in a frequency domain. In an earlier study the authors introduced a particular technique that allows characterization of the intracranial system in the frequency domain with sufficient accuracy and efficiency. This same method was used to analyze the relationship between ABP and ICP waveforms recorded during several acute states including hyperventilation as well as CSF withdrawal and infusion under conditions before and after inducing chronic obstructive hydrocephalus. Such a relationship is reflected in terms of a gain, which is a function of frequency. The cardiac pulsation absorbance (CPA) index, which is simply derived from a gain evaluated at the cardiac frequency, was used to quantitatively evaluate the changes in pulsation absorber function associated with the development of hydrocephalus within each of the animals, which did become hydrocephalic. To account for normal and hydrocephalic conditions within the same animal and at multiple time points, statistical analysis was performed by repeated-measures ANOVA.

Results

The performance of the pulsation absorber as assessed by CPA significantly deteriorated after the development of chronic hydrocephalus. In these animals the decrement in CPA was far more significant than other anticipated changes including those in ICP, compliance, or ICP pulse amplitude.

Conclusions

To the extent that the free CSF movement acts as a buffer of arterial pulsation input to flow in microvessels, alterations in the pulsation absorber may play a pathophysiological role. One measure of alterations in the way the brain deals with pulsatile input—the CPA measurement—changes dramatically with the imposition of hydrocephalus. Results in the present study suggest that CPA may serve as a complementary metric to the conventional static measure of intracranial compliance in other experimental and clinical studies.

Restricted access

Mohammed A. Fouda, Emily L. Day, David Zurakowski, R. Michael Scott, Edward R. Smith, Karen J. Marcus, and Katie P. Fehnel

OBJECTIVE

The goal in this study was to outline unique differences between radiation-induced and nonradiation-induced pediatric meningiomas and to identify independent risk factors of tumor recurrence/progression.

METHODS

This is a retrospective cohort study of all pediatric meningiomas diagnosed and surgically treated at the authors’ institution between 1993 and 2017. Multivariable Cox regression was applied to identify independent risk factors for tumor recurrence/progression.

RESULTS

Thirty-five patients were identified. The primary etiology was nonradiation-induced (n = 24: n = 3 with neurofibromatosis type 2) or radiation-induced (n = 11: acute lymphoblastic leukemia [n = 5], medulloblastoma [n = 4], germ cell tumor [n = 1], and primitive neuroectodermal tumor [n = 1]) meningioma. The mean age at time of diagnosis was 10.7 ± 5.7 years for nonradiation-induced and 17.3 ± 3.5 years for radiation-induced meningiomas. Overall, 8/24 patients with nonradiation-induced meningioma experienced either recurrence or progression of the tumor. Of the 8 patients with tumor recurrence or progression, the pathological diagnosis was clear cell meningioma (n = 3: 2 recurrent and 1 progressive); grade I (n = 2 progressive); grade I with atypical features (n = 2: 1 recurrent and 1 progressive); or atypical meningioma (n = 1 recurrent). None of the patients with radiation-induced meningioma experienced recurrence or progression. Predictors of tumor recurrence/progression by univariate analysis included age at time of diagnosis ≤ 10 years (p = 0.002), histological subtype clear cell meningioma (p = 0.003), and primary etiology nonradiation-induced meningioma (p = 0.04), and there was a notable trend with elevated MIB-1 staining index (SI) (p = 0.09). There was no significant difference between nonradiation-induced and radiation-induced meningiomas (p = 0.258), although there was a trend between recurrent and nonrecurrent meningiomas (p = 0.09). Multivariate Cox regression, adjusted for length of follow-up, identified younger age at diagnosis (p = 0.004) and a higher MIB-1 SI (p = 0.044) as independent risk factors for recurrence. Elevated MIB-1 SI statistically correlated with atypia (p < 0.001). However, there was no significant statistical correlation between tumor recurrence/progression and atypia (p = 0.2).

CONCLUSIONS

Younger patient age and higher MIB-1 SI are independent risk factors for recurrence. Atypia was not a predictor of recurrence.

Full access

Katie Pricola Fehnel, Micah Duggins-Warf, David Zurakowski, Maxwell McKee-Proctor, Rajarshi Majumder, Michael Raber, Xuezhe Han, and Edward R. Smith

OBJECTIVE

The authors report the use of urinary biomarkers as a novel, noninvasive technique to detect juvenile pilocytic astrocytomas (JPAs), capable of distinguishing JPAs from other CNS diseases, including other brain tumors. Preliminary screening of an array of tumors implicated proteases (including matrix metalloproteinases [MMPs]) and their inhibitors (tissue inhibitors of metalloproteinase [TIMPs]) as well as growth factors (including basic fibroblast growth factor [bFGF]) as candidate biomarkers. These data led the authors to hypothesize that tissue inhibitor of metalloproteinase 3 (TIMP3) and bFGF would represent high-probability candidates as JPA-specific biomarkers.

METHODS

Urine was collected from 107 patients, which included children with JPA (n = 21), medulloblastoma (n = 17), glioblastoma (n = 9), arteriovenous malformations (n = 25), moyamoya (n = 14), and age- and sex-matched controls (n = 21). Biomarker levels were quantified with enzyme-linked immunosorbent assay, tumor tissue expression was confirmed with immunohistochemical analysis, and longitudinal biomarker expression was correlated with imaging. Results were subjected to univariate and multivariate statistical analyses.

RESULTS

Using optimal urinary cutoff values of bFGF > 1.0 pg/μg and TIMP3 > 3.5 pg/μg, multiplexing bFGF and TIMP3 predicts JPA presence with 98% accuracy. Multiplexing bFGF and MMP13 distinguishes JPA from other brain tumor subtypes with up to 98% accuracy. Urinary biomarker expression correlated with both tumor immunohistochemistry and in vitro tumor levels. Urinary bFGF and TIMP3 decrease following successful tumor treatment and correlate with changes in tumor size.

CONCLUSIONS

This study identifies 2 urinary biomarkers—bFGF and TIMP3—that successfully detect one of the most common pediatric brain tumors with high accuracy. These data highlight potential benefits of urinary biomarkers and support their utility as diagnostic tools in the treatment of children with JPA.

Restricted access

A. Aria Tzika, Leo Ling Cheng, Liliana Goumnerova, Joseph R. Madsen, David Zurakowski, Loukas G. Astrakas, Maria K. Zarifi, R. Michael Scott, Douglas C. Anthony, R. Gilberto Gonzalez, and Peter McL. Black

Object. Magnetic resonance (MR) spectroscopy provides biochemical information about tumors. The authors sought to determine the relationship between in vivo and ex vivo biochemical characterization of pediatric brain tumors by using MR spectroscopy. Their hypothesis was that ex vivo MR spectroscopy provides a link between in vivo MR spectroscopy and neuropathological analysis.

Methods. In vivo proton MR spectroscopy was performed before surgery in 11 patients with neuroepithelial tumors. During resection, a total of 40 tumor biopsy samples were obtained from within the volume of interest identified on in vivo MR spectroscopy and were frozen immediately in liquid nitrogen. High-Resolution Magic Angle Spinning (HRMAS) was used to perform ex vivo MR spectroscopy in these 40 tumor biopsy samples. Neuropathological analysis was performed using the same biopsy samples, and the tumors were classified as ependymoma, choroid plexus carcinoma, pineoblastoma (one each), and pilocytic astrocytoma, medullobastoma, low-grade glioma, and glioblastoma multiforme (two each).

Ex vivo HRMAS MR spectroscopy improved line widths and line shapes in the spectra, compared with in vivo MR spectroscopy. Choline (Cho) detected in vivo corresponded to three different peaks ex vivo (glycerophosphocholine, phosphocholine [PCho], and Cho). Metabolite ratios from in vivo spectra correlated with ratios from ex vivo spectra (Pearson correlation coefficient range r = 0.72–0.91; p ≤ 0.01). Metabolite ratios from ex vivo spectra, such as PCho/total creatine (tCr) and lipid/tCr, correlated with the percentage of cancerous tissue and percentage of tumor necrosis, respectively (r = 0.84; p ≤ 0.001).

Conclusions. Agreement between in vivo and ex vivo MR spectroscopy indicates that ex vivo HRMAS MR spectroscopy can improve resolution of this modality and provide a link between in vivo MR spectroscopy and neuropathological analysis.