Search Results

You are looking at 1 - 10 of 37 items for

  • Author or Editor: David Schlesinger x
Clear All Modify Search
Restricted access

David Schlesinger, John Snell and Jason Sheehan

Object

The relative performances of two plugging strategies commonly used for pituitary adenoma dose plans were evaluated in terms of factors that influence dose plan quality.

Methods

Dose plans and clinical treatment data were obtained in 108 patients treated with the Model C Gamma Knife at the University of Virginia. These data were analyzed to determine factors (including plugging strategy) influencing the quality of the dose plans in terms of beam time, conformity, dose to the optic apparatus, and plugging burden.

For both secretory and nonsecreory adenomas, beam time (psecretory < 0.001, pnonsecretory = 0.015) and plugging burden (psecretory = 0.007, pnonsecretory = 0.038) were reduced when using the customized plugging strategy. The choice of plugging strategy was found to play no significant role in conformity or dose to the optic apparatus. Other factors found to play a significant role in adenoma dose plan quality included tumor volume, prescription dose, and distance from the target to the optic pathways.

Conclusions

While both plugging strategies were effective at providing the required protection to the optic pathways, the authors found that the customized plugging strategy provided more efficient performance in pituitary adenoma treatments.

Restricted access

Claire Olson, Chun-Po Yen, David Schlesinger and Jason Sheehan

Object

Intracranial hemangiopericytoma is a rare CNS tumor that exhibits a high incidence of local recurrence and distant metastasis. The purpose of this study was to evaluate the role of Gamma Knife surgery (GKS) in the management of intracranial hemangiopericytomas.

Methods

In a review of the University of Virginia radiosurgery database between 1989 and 2008, the authors found recurrent or residual hemangiopericytomas after resection in 21 patients in whom radiosurgery was performed to treat 28 discrete tumors. The median age of this population was 47 years (range 31–61 years) at the time of the initial GKS. Prior treatments included embolization (6), transcranial resection (39), transsphenoidal resection (2), and fractionated radiotherapy (8). The mean prescription and maximum radiosurgical doses to the tumors were 17.0 and 40.3 Gy, respectively. Repeat radiosurgery was used to treat 13 tumors. The median follow-up period was 68 months (range 2–138 months).

Results

At last follow-up, local tumor control was demonstrated in 47.6% of the patients (10 of 21 patients) with hemangiopericytomas. Of the 28 tumors treated, 8 decreased in size on follow-up imaging (28.6%), 5 remained unchanged (17.9%), and 15 ultimately progressed (53.6%). The progression-free survival rates were 90, 60.3, and 28.7% at 1, 3, and 5 years after initial GKS. The progression-free survival rate improved to 95, 71.5, and 71.5% at 1, 3, and 5 years after multiple GKS treatments. The 5-year survival rate after radiosurgery was 81%. Prior fractionated irradiation or radiosurgical prescription dose did not correlate with tumor control. In 4 (19%) of 21 patients extracranial metastases developed.

Conclusions

Radiosurgery is a reasonable treatment option for recurrent hemangiopericytomas. Long-term close clinical and imaging follow-up is necessary because of the high probability of local recurrence and distant metastases. Repeat radiosurgery may be used to treat new or recurrent hemangiopericytomas over a long follow-up course.

Restricted access

Mohamed Elsharkawy, Zhiyuan Xu, David Schlesinger and Jason P. Sheehan

Object

Most intracranial schwannomas arise from cranial nerve (CN) VIII. Stereotactic radiosurgery is a mainstay of treatment for vestibular schwannomas. Intracranial schwannomas arising from other CNs are much less common. We evaluate the efficacy of Gamma Knife surgery on nonvestibular schwannomas including trigeminal, hypoglossal, abducent, facial, trochlear, oculomotor, glossopharyngeal, and jugular foramen tumors.

Methods

Thirty-six patients with nonvestibular schwannomas were treated at the University of Virginia Gamma Knife center from 1989 to 2008. The median patient age was 48 years (mean 45.6 years, range 10–72 years). Schwannomas arose from the following CNs: CN III (in 1 patient), CN IV (in 1), CN V (in 25), CN VI (in 2), CN VII (in 1), CN IX (in 1), and CN XII (in 3). In 2 patients, tumors arose from the jugular foramen. The median tumor volume was 2.9 cm3 (mean 3.3 cm3, range 0.07–8.8 cm3). The median margin dose was 13.5 Gy (range 9.3–20 Gy); the median maximum dose was 30 Gy (range 21.7–50.0 Gy).

Results

The mean and median follow-up times of 36 patients were 54 and 37 months, respectively (range 2–180 months). At the last radiological follow-up, the tumor size had decreased in 20 patients, remained stable in 9 patients, and increased in 7 patients. The 2-year actuarial progression-free survival was 91%. Higher maximum dose was statistically related to tumor control (p = 0.027).

Thirty-three patients had adequate clinical follow-up. Among them, 21 patients had improvement in their presenting symptoms, 8 patients were stable after treatment with no worsening of their presenting symptoms, 2 patients developed new symptoms, and 1 patient experienced symptom deterioration. Notably, 1 patient with neurofibromatosis Type 2 developed new symptoms that were unrelated to the tumor treated with Gamma Knife surgery.

Conclusions

Gamma Knife surgery is a reasonably effective treatment option for patients with nonvestibular schwannomas. Patients require careful follow-up for tumor progression and signs of neurological deterioration.

Restricted access

Christopher P. Cifarelli, David J. Schlesinger and Jason P. Sheehan

Object

Gamma Knife surgery (GKS) has become a significant component of neurosurgical treatment for recurrent secretory and nonsecretory pituitary adenomas. Although the long-term risks of visual dysfunction following microsurgical resection of pituitary adenomas has been well studied, the comparable risk following radiosurgery is not well defined. This study evaluates the long-term risks of ophthalmological dysfunction following GKS for recurrent pituitary adenomas.

Methods

An analysis of 217 patients with recurrent secretory (n = 131) and nonsecretory (n = 86) pituitary adenomas was performed to determine the incidence of and risk factors for subsequent development of visual dysfunction. Patients underwent ophthalmological evaluation as part of post-GKS follow-up to assess for new or worsened cranial nerve II, III, IV, or VI palsies. The median follow-up duration was 32 months. The median maximal dose was 50 Gy, and the median peripheral dose was 23 Gy. A univariate analysis was performed to assess for risk factors of visual dysfunction post-GKS.

Results

Nine patients (4%) developed new visual dysfunctions, and these occurred within 6 hours to 34 months following radiosurgery. None of these 9 patients had tumor growth on post-GKS neuroimaging studies. Three of these patients had permanent deficits whereas in 6 the deficits resolved. Five of the 9 patients had prior GKS or radiotherapy, which resulted in a significant increase in the incidence of cranial nerve dysfunction (p = 0.0008). An increased number of isocenters (7.1 vs 5.0, p = 0.048) was statistically related to the development of visual dysfunction. Maximal dose, margin dose, optic apparatus dose, tumor volume, cavernous sinus involvement, and suprasellar extension were not significantly related to visual dysfunction (p >0.05).

Conclusions

Neurological and ophthalmological assessment in addition to routine neuroimaging and endocrinological follow-up are important to perform following GKS. Patients with a history of radiosurgery or radiation therapy are at higher risk of cranial nerve deficits. Also, a reduction in the number of isocenters delivered, along with volume treated, particularly in the patients with secretory tumors, appears to be the most reasonable strategy to minimize the risk to the visual system when treating recurrent pituitary adenomas with stereotactic radiosurgery.

Restricted access

Mohamed Samy Elhammady and Roberto C. Heros

Full access

Cheng-Chia Lee, Chun-Po Yen, Zhiyuan Xu, David Schlesinger and Jason Sheehan

Object

The use of radiosurgery has been well accepted for treating small to medium-size metastatic brain tumors (MBTs). However, its utility in treating large MBTs remains uncertain due to potentially unfavorable effects such as progressive perifocal brain edema and neurological deterioration. In this retrospective study the authors evaluated the local tumor control rate and analyzed possible factors affecting tumor and brain edema response.

Methods

The authors defined a large brain metastasis as one with a measurement of 3 cm or more in at least one of the 3 cardinal planes (coronal, axial, or sagittal). A consecutive series of 109 patients with 119 large intracranial metastatic lesions were treated with Gamma Knife surgery (GKS) between October 2000 and December 2012; the median tumor volume was 16.8 cm3 (range 6.0–74.8 cm3). The pre-GKS Karnofsky Performance Status (KPS) score for these patients ranged from 70 to 100. The most common tumors of origin were non–small cell lung cancers (29.4% of cases in this series). Thirty-six patients (33.0%) had previously undergone a craniotomy (1–3 times) for tumor resection. Forty-three patients (39.4%) underwent whole-brain radiotherapy (WBRT) before GKS. Patients were treated with GKS and followed clinically and radiographically at 2- to 3-month intervals thereafter.

Results

The median duration of imaging follow-up after GKS for patients with large MBTs in this series was 6.3 months. In the first follow-up MRI studies (performed within 3 months after GKS), 77 lesions (64.7%) had regressed, 24 (20.2%) were stable, and 18 (15.1%) were found to have grown. Peritumoral brain edema as defined on T2-weighted MRI sequences had decreased in 79 lesions (66.4%), was stable in 21 (17.6%), but had progressed in 19 (16.0%). In the group of patients who survived longer than 6 months (76 patients with 77 MBTs), 88.3% of the MBTs (68 of 77 lesions) had regressed or remained stable at the most recent imaging follow-up, and 89.6% (69 of 77 lesions) showed regression of perifocal brain edema volume or stable condition. The median duration of survival after GKS was 8.3 months for patients with large MBTs. Patients with small cell lung cancer and no previous WBRT had a significantly higher tumor control rate as well as better brain edema relief. Patients with a single metastasis, better KPS scores, and no previous radiosurgery or WBRT were more likely to decrease corticosteroid use after GKS. On the other hand, higher pre-GKS KPS score was the only factor that showed a statistically significant association with longer survival.

Conclusions

Treating large MBTs using either microsurgery or radiosurgery is a challenge for neurosurgeons. In selected patients with large brain metastases, radiosurgery offered a reasonable local tumor control rate and favorable functional preservation. Exacerbation of underlying edema was rare in this case series. Far more commonly, edema and steroid use were lessened after radiosurgery. Radiosurgery appears to be a reasonable option for some patients with large MBTs.

Free access

Or Cohen-Inbar, Cheng-Chia Lee, Zhiyuan Xu, David Schlesinger and Jason P. Sheehan

OBJECT

The authors review outcomes following Gamma Knife radiosurgery (GKRS) of cerebral arteriovenous malformations (AVMs) and their correlation to postradiosurgery adverse radiation effects (AREs).

METHODS

From a prospective institutional review board–approved database, the authors identified patients with a minimum of 2 years of follow-up and thin-slice T2-weighted MRI sequences for volumetric analysis. A total of 105 AVM patients were included. The authors analyzed the incidence and quantitative changes in AREs as a function of time after GKRS. Statistical analysis was performed to identify factors related to ARE development and changes in the ARE index.

RESULTS

The median clinical follow-up was 53.8 months (range 24–212.4 months), and the median MRI follow-up was 36.8 months (range 24–212.4 months). 47.6% of patients had an AVM with a Spetzler-Martin grade ≥ III. The median administered margin and maximum doses were 22 and 40 Gy, respectively. The overall obliteration rate was 70.5%. Of patients who showed complete obliteration, 74.4% developed AREs within 4–6 months after GKRS. Late-onset AREs (i.e., > 12 months) correlated to a failure to obliterate the nidus. 58.1% of patients who developed appreciable AREs (defined as ARE index > 8) proceeded to have a complete nidus obliteration. Appreciable AREs were found to be influenced by AVM nidus volume > 3 ml, lobar location, number of draining veins and feeding arteries, prior embolization, and higher margin dose. On the other hand, a minimum ARE index > 8 predicted obliteration (p = 0.043).

CONCLUSIONS

ARE development after radiosurgery follows a temporal pattern peaking at 7–12 months after stereotactic radiosurgery. The ARE index serves as an important adjunct tool in patient follow-up and outcome prediction.

Restricted access

David J. Schlesinger, Faisal T. Sayer, Chun-Po Yen and Jason P. Sheehan

Object

Treatment planning for Gamma Knife surgery has traditionally been a forward planning (FP)–only approach with results that depend significantly on the experience of the user. Leksell GammaPlan version 10.0, currently in beta testing, introduces a new inverse planning (IP) engine that may allow more reproducible results across dosimetrists and individual institutions. In this study the authors compared the FP and IP approaches to Gamma Knife surgery.

Methods

Forty-three patients with pituitary adenomas were evaluated after dose planning was performed using FP and IP treatment approaches. Treatment plans were compared for target coverage, target selectivity, Paddick gradient index, number of isocenters, optic pathways dose, and treatment time. Differences between the forward and inverse treatment plans were evaluated in a statistical fashion.

Results

The IP software generated a dose plan within approximately 10 minutes. The FP approach delivered the prescribed isodose to a larger treatment volume than the IP system (p < 0.001). The mean (± SD) FP and IP coverage indices were 0.85 ± 0.23 and 0.85 ± 0.13, respectively (no significant difference). The mean FP and IP gradient indices were 2.78 ± 0.20 and 3.08 ± 0.37, respectively (p < 0.001). The number of isocenters did not appreciably differ between approaches. The maximum doses directed to the optic apparatus for the FP and IP methods were 8.67 ± 1.97 Gy and 12.33 ± 5.86 Gy, respectively (p < 0.001).

Conclusions

The Leksell GammaPlan IP system was easy to operate and provided a reasonable, first approximation dose plan. Particularly in cases in which there are eloquent structures at risk, experience and user-based optimization will be required to achieve an acceptable Gamma Knife dose plan.

Restricted access

Jason P. Sheehan, Chun-Po Yen, James Nguyen, Jessica A. Rainey, Kasandra Dassoulas and David J. Schlesinger

Object

Stereotactic radiosurgery has been shown to afford a reasonable chance of local tumor control. However, new brain metastasis can arise following successful local tumor control from radiosurgery. This study evaluates the timing, number, and risk factors for development of subsequent new brain metastasis in a group of patients treated with stereotactic radiosurgery alone.

Methods

One hundred seventeen patients with histologically confirmed metastatic cancer underwent Gamma Knife surgery (GKS) to treat all brain metastases demonstrable on MR imaging. Patients were followed clinically and radiologically at approximately 3-month intervals for a median of 14.4 months (range 0.37–51.8 months). Follow-up MR images were evaluated for evidence of new brain metastasis formation. Statistical analyses were performed to determine the timing, number, and risk factors for development of new brain metastases.

Results

The median time to development of a new brain metastasis was 8.8 months. Patients with 3 or more metastases at the time of initial radiosurgery or those with cancer histologies other than non–small cell lung carcinoma were found to be at increased risk for early formation of new brain metastasis (p < 0.05). The mean number of new metastases per patient was 1.6 (range 0–11). Those with a higher Karnofsky Performance Scale score at the time of initial GKS were significantly more likely to develop a greater number of brain metastases by the last follow-up evaluation.

Conclusions

The timing and number of new brain metastases developing in patients treated with GKS alone is not inconsequential. Those with 3 or more metastases at the time of radiosurgery and those with cancer histology other than non–small cell lung carcinoma were at greater risk of early formation of new brain metastasis. Frequent follow-up evaluations, such as at 3-month intervals, appears appropriate in this patient population, particularly in high-risk patients. When detected early, salvage treatments including repeat radiosurgery can be used to treat new brain metastasis.

Restricted access

Arnaldo Neves Da Silva, Kazuki Nagayama, David J. Schlesinger and Jason P. Sheehan

Object

Brain metastases from gastrointestinal cancers are rare. However, the incidence is increasing because patients with gastrointestinal carcinoma tend to live longer due to earlier diagnosis and more effective treatment of systemic disease. The purpose of this study was to evaluate the efficacy of Gamma Knife surgery (GKS) for the treatment of brain metastases from gastrointestinal cancers.

Methods

The authors performed a retrospective review of 40 patients (18 women and 22 men) who had undergone GKS to treat a total of 118 metastases from gastrointestinal cancers between January 1996 and December 2006. The mean patient age was 58.7 years, and the mean Karnofsky Performance Scale (KPS) score was 70. There were 7 patients with esophageal cancer, 25 with colon cancer, 5 with rectal cancer, 2 with pancreatic cancer, and 1 with gastric cancer. Nineteen patients were treated with whole-brain radiotherapy and/or local brain radiotherapy before GKS. Twenty-four patients had extracranial metastases, and 3 had an additional primary cancer. The mean metastatic brain tumor volume was 4.3 cm3, and the mean maximum tumor dose varied from 17.1 to 76.7 Gy (mean 41.8 Gy).

Results

Follow-up imaging studies were available in 25 patients with a total of 90 treated metastases. The results demonstrate a tumor control rate of 91%. The median survival time was 6.7 months, and the 6-month and 1-year survival rates were 55 and 25%, respectively. A univariate analysis revealed that the KPS score (≤ 70 vs ≥ 80) was significant (p = 0.018) for improved survival.

Conclusions

Results in this series suggest that GKS can be an effective tool for the treatment of brain metastases from gastrointestinal cancer.