Search Results

You are looking at 1 - 10 of 13 items for

  • Author or Editor: David Mikulis x
Clear All Modify Search
Free access

Aria Nouri, Allan R. Martin, David Mikulis and Michael G. Fehlings

Degenerative cervical myelopathy encompasses a spectrum of age-related structural changes of the cervical spine that result in static and dynamic injury to the spinal cord and collectively represent the most common cause of myelopathy in adults. Although cervical myelopathy is determined clinically, the diagnosis requires confirmation via imaging, and MRI is the preferred modality. Because of the heterogeneity of the condition and evolution of MRI technology, multiple techniques have been developed over the years in an attempt to quantify the degree of baseline severity and potential for neurological recovery. In this review, these techniques are categorized anatomically into those that focus on bone, ligaments, discs, and the spinal cord. In addition, measurements for the cervical spine canal size and sagittal alignment are also described briefly. These tools have resulted collectively in the identification of numerous useful parameters. However, the development of multiple techniques for assessing the same feature, such as cord compression, has also resulted in a number of challenges, including introducing ambiguity in terms of which methods to use and hindering effective comparisons of analysis in the literature. In addition, newer techniques that use advanced MRI are emerging and providing exciting new tools for assessing the spinal cord in patients with degenerative cervical myelopathy.

Restricted access

David W. Cadotte, Patrick W. Stroman, David Mikulis and Michael G. Fehlings

Object

Since the first published report of spinal functional MRI (fMRI) in humans in 1996, this body of literature has grown substantially. In the present article, the authors systematically review all spinal fMRI studies conducted in healthy individuals with a focus on the different motor and sensory paradigms used and the results acquired.

Methods

The authors conducted a systematic search of MEDLINE for literature published from 1990 through November 2011 reporting on stimulation paradigms used to assess spinal fMRI scans in healthy individuals.

Results

They identified 19 peer-reviewed studies from 1996 to the present in which a combination of different spinal fMRI methods were used to investigate the spinal cord in healthy individuals. Eight of the studies used a motor stimulation paradigm, 10 used a sensory stimulation paradigm, and 1 compared motor and sensory stimulation paradigms.

Conclusions

Despite differences in the results of various studies, even when similar stimulation paradigms were used, this body of literature underscores that spinal fMRI signals can be obtained from the human spinal cord. The authors intend this review to serve as an introduction to spinal fMRI research and what it may offer the field of spinal cord injury research.

Restricted access

Sagun K. Tuli, R. John Hurlbert, David Mikulis and J. F. Ross Fleming

✓ This 44-year-old man presented with a 4-year history of progressive spastic weakness of his legs. He was found to have epidural lipomatosis behind the thoracic spinal cord, and the nerve roots exited from the posterior and anterior midline planes of the dura, indicating a 90° rotation of the thoracic cord. Magnetic resonance images clearly demonstrated the segmental thoracic nerve roots exiting from the dorsal midline of the dura, a finding confirmed at surgery. The authors found only one previously published case of rotation of the spinal cord.

Directed mechanical stress caused by deformation of the rotated spinal cord, rather than compression from adipose tissue, is proposed as the mechanism of the myelopathy. The extent, location, and thickness of the associated extradural adipose tissue is suggestive of epidural lipomatosis. The lipomatous tissue might have been an epiphenomenon and cord rotation an isolated congenital anomaly. Alternatively, asymmetrical growth of epidural fat may have exerted torque, rotating the thecal sac.

Full access

Susanna Bacigaluppi, Amir R. Dehdashti, Ronit Agid, Timo Krings, Michael Tymianski and David J. Mikulis

The aim of this review was to evaluate the imaging tools used in diagnosis and perioperative assessment of moyamoya disease, with particular attention to the last decade.

Free access

Vibhor Krishna, Francesco Sammartino, Philip Yee, David Mikulis, Matthew Walker, Gavin Elias and Mojgan Hodaie

OBJECTIVE

The diagnosis of Chiari malformation Type I (CM-I) is primarily based on the degree of cerebellar tonsillar herniation even though it does not always correlate with symptoms. Neurological dysfunction in CM-I presumably results from brainstem compression. With the premise that conventional MRI does not reveal brain microstructural changes, this study examined both structural and microstructural neuroimaging metrics to distinguish patients with CM-I from age- and sex-matched healthy control subjects.

METHODS

Eight patients with CM-I and 16 controls were analyzed. Image postprocessing involved coregistration of anatomical T1-weighted with diffusion tensor images using 3D Slicer software. The structural parameters included volumes of the posterior fossa, fourth ventricle, and tentorial angle. Fractional anisotropy (FA) was calculated separately in the anterior and posterior compartments of the lower brainstem.

RESULTS

The mean age of patients in the CM-I cohort was 42.6 ± 10.4 years with mean tonsillar herniation of 12 mm (SD 0.7 mm). There were no significant differences in the posterior fossa volume (p = 0.06) or fourth ventricular volume between the 2 groups (p = 0.11). However, the FA in the anterior brainstem compartment was significantly higher in patients with CM-I preoperatively (p = 0.001). The FA values normalized after Chiari decompression except for persistently elevated FA in the posterior brainstem compartment in patients with CM-I and syrinx.

CONCLUSIONS

In this case-control study, microstructural alterations appear to be reliably associated with the diagnosis of CM-I, with a significantly elevated FA in the lower brainstem in patients with CM-I compared with controls. More importantly, the FA values normalized after decompressive surgery. These findings should be validated in future studies to determine the significance of diffusion tensor imaging–based assessment of brainstem microstructural integrity as an adjunct to the clinical assessment in patients with CM-I.

Restricted access

David J. Mikulis, Gregory Krolczyk, Hubert Desal, William Logan, Gabrielle deVeber, Peter Dirks, Michael Tymianski, Adrian Crawley, Alex Vesely, Andrea Kassner, David Preiss, Ron Somogyi and Joseph A. Fisher

Object. The ability to map cerebrovascular reactivity (CVR) at the tissue level in patients with moyamoya disease could have considerable impact on patient management, especially in guiding surgical intervention and assessing the effectiveness of surgical revascularization. This paper introduces a new noninvasive magnetic resonance (MR) imaging—based method to map CVR. Preoperative and postoperative results are reported in three cases to demonstrate the efficacy of this technique in assessing vascular reserve at the microvascular level.

Methods. Three patients with angiographically confirmed moyamoya disease were evaluated before and after surgical revascularization. Measurements of CVR were obtained by rapidly manipulating end-tidal PCO2 between hypercapnic and hypocapnic states during MR imaging. The CVR maps were then calculated by comparing the percentage of changes in MR signal with changes in end-tidal PCO2.

Presurgical CVR maps showed distinct regions of positive and negative reactivity that correlated precisely with the vascular territories supplied by severely narrowed vessels. Postsurgical reactivity maps demonstrated improvement in the two patients with positive clinical outcome and no change in the patient in whom a failed superficial temporal artery—middle cerebral artery bypass was performed.

Conclusions. Magnetic imaging—based CVR mapping during rapid manipulation of end-tidal PCO2 is an exciting new method for determining the location and extent of abnormal vascular reactivity secondary to proximal large-vessel stenoses in moyamoya disease. Although the study group is small, there seems to be considerable potential for guiding preoperative decisions and monitoring efficacy of surgical revascularization.

Restricted access

Ali R. Rezai, Andres M. Lozano, Adrian P. Crawley, Michael L. G. Joy, Karen D. Davis, Chun L. Kwan, Jonathan O. Dostrovsky, Ronald R. Tasker and David J. Mikulis

✓ The utility of functional magnetic resonance (fMR) imaging in patients with implanted thalamic electrodes has not yet been determined. The aim of this study was to establish the safety of performing fMR imaging in patients with thalamic deep brain stimulators and to determine the value of fMR imaging in detecting cortical and subcortical activity during stimulation.

Functional MR imaging was performed in three patients suffering from chronic pain and two patients with essential tremor. Two of the three patients with pain had undergone electrode implantation in the thalamic sensory ventralis caudalis (Vc) nucleus and the other had undergone electrode implantation in both the Vc and the periventricular gray (PVG) matter. Patients with tremor underwent electrode implantation in the ventralis intermedius (Vim) nucleus. Functional MR imaging was performed during stimulation by using a pulse generator connected to a transcutaneous extension lead. Clinically, Vc stimulation evoked paresthesias in the contralateral body, PVG stimulation evoked a sensation of diffuse internal body warmth, and Vim stimulation caused tremor arrest.

Functional images were acquired using a 1.5-tesla MR imaging system. The Vc stimulation at intensities provoking paresthesias resulted in activation of the primary somatosensory cortex (SI). Stimulation at subthreshold intensities failed to activate the SI. Additional stimulation-coupled activation was observed in the thalamus, the secondary somatosensory cortex (SII), and the insula. In contrast, stimulation of the PVG electrode did not evoke paresthesias or activate the SI, but resulted in medial thalamic and cingulate cortex activation. Stimulation in the Vim resulted in thalamic, basal ganglia, and SI activation.

An evaluation of the safety of the procedure indicated that significant current could be induced within the electrode if a faulty connecting cable (defective insulation) came in contact with the patient. Simple precautions, such as inspection of wires for fraying and prevention of their contact with the patient, enabled the procedure to be conducted safely. Clinical safety was further corroborated by performing 86 MR studies in patients in whom electrodes had been implanted with no adverse clinical effects.

This is the first report of the use of fMR imaging during stimulation with implanted thalamic electrodes. The authors' findings demonstrate that fMR imaging can safely detect the activation of cortical and subcortical neuronal pathways during stimulation and that stimulation does not interfere with imaging. This approach offers great potential for understanding the mechanisms of action of deep brain stimulation and those underlying pain and tremor generation.

Restricted access

Jorn Fierstra, Stephanie Spieth, Leanne Tran, John Conklin, Michael Tymianski, Karel G. ter Brugge, Joseph A. Fisher, David J. Mikulis and Timo Krings

Object

Cerebral proliferative angiopathy (CPA) has been morphologically distinguished from classically appearing brain arteriovenous malformations (AVMs) by exhibition of functional brain parenchyma that is intermingled with abnormal vascular channels. The presence of oligemia in this intralesional brain tissue may suggest ischemia, which is not detected in classic brain AVMs. The authors hypothesized that patients with CPA would exhibit a greater impairment of cerebrovascular reserve in neuronal tissue surrounding the true nidus compared with those with brain AVMs.

Methods

Four patients with CPA, 10 patients with brain AVMs and seizures, and 12 young healthy individuals were studied. The 4 patients with CPA underwent blood oxygen level–dependent MR imaging examinations while applying normoxic step changes in end-tidal CO2 to obtain quantitative cerebrovascular reactivity measurements.

Results

Patients with a CPA lesion exhibited severely impaired perilesional cerebrovascular reserve in comparison with patients with brain AVMs and seizures (0.10 ± 0.03 vs 0.16 ± 0.03, respectively; p < 0.05), and young healthy individuals (0.10 ± 0.03 vs 0.21 ± 0.06, respectively; p < 0.01)

Conclusions

This study demonstrated severely impaired cerebrovascular reserve in the perilesional brain tissue surrounding the abnormal vessels of patients with CPA. This finding may provide an additional means to distinguish CPA from classic brain AVMs.

Full access

Ali R. Rezai, Andres M. Lozano, Adrian P. Crawley, Michael L. G. Joy, Karen D. Davis, Chun L. Kwan, Jonathan O. Dostrovsky, Ronald R. Tasker and David J. Mikulis

The utility of functional magnetic resonance (fMR) imaging in patients with implanted thalamic electrodes has not yet been determined. The aim of this study was to establish the safety of performing fMR imaging in patients with thalamic deep brain stimulators and to determine the value of fMR imaging in detecting cortical and subcortical activity during stimulation.

Functional MR imaging was performed in three patients suffering from chronic pain and two patients with essential tremor. Two of the three patients with pain had undergone electrode implantation in the thalamic sensory ventralis caudalis (Vc) nucleus and the other had undergone electrode implantation in both the Vc and the periventricular gray (PVG) matter. Patients with tremor underwent electrode implantation in the ventralis intermedius (Vim) nucleus. Functional MR imaging was performed during stimulation by using a pulse generator connected to a transcutaneous extension lead. Clinically, Vc stimulation evoked paresthesias in the contralateral body, PVG stimulation evoked a sensation of diffuse internal body warmth, and Vim stimulation caused tremor arrest.

Functional images were acquired using a 1.5-tesla MR imaging system. The Vc stimulation at intensities provoking paresthesias resulted in activation of the primary somatosensory cortex (SI). Stimulation at subthreshold intensities failed to activate the SI. Additional stimulation-coupled activation was observed in the thalamus, the secondary somatosensory cortex (SII), and the insula. In contrast, stimulation of the PVG electrode did not evoke paresthesias or activate the SI, but resulted in medial thalamic and cingulate cortex activation. Stimulation in the Vim resulted in thalamic, basal ganglia, and SI activation.

An evaluation of the safety of the procedure indicated that significant current could be induced within the electrode if a faulty connecting cable (defective insulation) came in contact with the patient. Simple precautions, such as inspection of wires for fraying and prevention of their contact with the patient, enabled the procedure to be conducted safely. Clinical safety was further corroborated by performing 86 MR studies in patients in whom electrodes had been implanted with no adverse clinical effects.

This is the first report of the use of fMR imaging during stimulation with implanted thalamic electrodes. The authors' findings demonstrate that fMR imaging can safely detect the activation of cortical and subcortical neuronal pathways during stimulation and that stimulation does not interfere with imaging. This approach offers great potential for understanding the mechanisms of action of deep brain stimulation and those underlying pain and tremor generation.

Restricted access

Jean A. Saint-Cyr, Tasnuva Hoque, Luiz C. M. Pereira, Jonathan O. Dostrovsky, William D. Hutchison, David J. Mikulis, Aviva Abosch, Elspeth Sime, Anthony E. Lang and Andres M. Lozano

Object. The authors sought to determine the location of deep brain stimulation (DBS) electrodes that were most effective in treating Parkinson disease (PD).

Methods. Fifty-four DBS electrodes were localized in and adjacent to the subthalamic nucleus (STN) postoperatively by using magnetic resonance (MR) imaging in a series of 29 patients in whom electrodes were implanted for the treatment of medically refractory PD, and for whom quantitative clinical assessments were available both pre- and postoperatively. A novel MR imaging sequence was developed that optimized visualization of the STN. The coordinates of the tips of these electrodes were calculated three dimensionally and the results were normalized and corrected for individual differences by using intraoperative neurophysiological data (mean 5.13 mm caudal to the midcommissural point [MCP], 8.46 mm inferior to the anterior commissure—posterior commissure [AC—PC], and 10.2 mm lateral to the midline).

Despite reported concerns about distortion on the MR image, reconstructions provided consistent data for the localization of electrodes. The neurosurgical procedures used, which were guided by combined neuroimaging and neurophysiological methods, resulted in the consistent placement of DBS electrodes in the subthalamus and mesencephalon such that the electrode contacts passed through the STN and dorsally adjacent fields of Forel (FF) and zona incerta (ZI). The mean location of the clinically effective contacts was in the anterodorsal STN (mean 1.62 mm posterior to the MCP, 2.47 mm inferior to the AC—PC, and 11.72 mm lateral to the midline). Clinically effective stimulation was most commonly directed at the anterodorsal STN, with the current spreading into the dorsally adjacent FF and ZI.

Conclusions. The anatomical localization of clinically effective electrode contacts provided in this study yields useful information for the postoperative programming of DBS electrodes.