Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: David J. Segar x
  • All content x
Clear All Modify Search
Free access

Maya Harary, David J. Segar, Kevin T. Huang, Ian J. Tafel, Pablo A. Valdes, and G. Rees Cosgrove

Focused ultrasound (FUS) has been under investigation for neurosurgical applications since the 1940s. Early experiments demonstrated ultrasound as an effective tool for the creation of intracranial lesions; however, they were limited by the need for craniotomy to avoid trajectory damage and wave distortion by the skull, and they also lacked effective techniques for monitoring. Since then, the development and hemispheric distribution of phased arrays has resolved the issue of the skull and allowed for a completely transcranial procedure. Similarly, advances in MR technology have allowed for the real-time guidance of FUS procedures using MR thermometry. MR-guided FUS (MRgFUS) has primarily been investigated for its thermal lesioning capabilities and was recently approved for use in essential tremor. In this capacity, the use of MRgFUS is being investigated for other ablative indications in functional neurosurgery and neurooncology. Other applications of MRgFUS that are under active investigation include opening of the blood-brain barrier to facilitate delivery of therapeutic agents, neuromodulation, and thrombolysis. These recent advances suggest a promising future for MRgFUS as a viable and noninvasive neurosurgical tool, with strong potential for yet-unrealized applications.

Free access

David J. Segar, Yosef G. Chodakiewitz, Radmehr Torabi, and G. Rees Cosgrove

Deep brain stimulation (DBS) has been reported to have beneficial effects in severe, treatment-refractory cases of obsessive-compulsive disorder (OCD) and Tourette syndrome (TS). In this report, the authors present the first case in which DBS was used to treat the neuropsychiatric symptoms of Kleefstra syndrome, a rare genetic disorder characterized by childhood hypotonia, intellectual disability, distinctive facial features, and myriad psychiatric and behavioral disturbances. A 24-year-old female patient with childhood hypotonia, developmental delay, and diagnoses of autism spectrum disorder, OCD, and TS refractory to medical management underwent the placement of bilateral ventral capsule/ventral striatum (VC/VS) DBS leads, with clinical improvement. Medical providers and family observed gradual and progressive improvement in the patient's compulsive behaviors, coprolalia, speech, and social interaction. Symptoms recurred when both DBS electrodes failed because of lead fracture and dislodgement, although the clinical benefits were restored by lead replacement. The symptomatic and functional improvements observed in this case of VC/VS DBS for Kleefstra syndrome suggest a novel indication for DBS worthy of further investigation.

Restricted access

Jasmine A. Thum DiCesare, David J. Segar, Brian V. Nahed, and Maya Babu

Full access

Jonathan J. Lee, David J. Segar, John F. Morrison, William M. Mangham, Shane Lee, and Wael F. Asaad

OBJECTIVE

Early radiographic findings in patients with traumatic brain injury (TBI) have been studied in hopes of better predicting injury severity and outcome. However, prior attempts have generally not considered the various types of intracranial hemorrhage in isolation and have typically not excluded patients with potentially confounding extracranial injuries. Therefore, the authors examined the associations of various radiographic findings with short-term outcome to assess the potential utility of these findings in future prognostic models.

METHODS

The authors retrospectively identified 1716 patients who had experienced TBI without major extracranial injuries, and categorized them into the following TBI subtypes: subdural hematoma (SDH), traumatic subarachnoid hemorrhage, intraparenchymal hemorrhage (which included intraventricular hemorrhage), and epidural hematoma. They specifically considered isolated forms of hemorrhage, in which only 1 subtype was present.

RESULTS

In general, the presence of an isolated SDH was more likely to result in worse outcomes than the presence of other isolated forms of traumatic intracranial hemorrhage. Discharge to home was less likely and perihospital mortality rates were generally higher in patients with SDH. These findings were not simply related to age and were not fully captured by the admission Glasgow Coma Scale (GCS) score. The presence of SDH had a much higher sensitivity for poor outcome than the presence of other TBI subtypes, and was more sensitive for these poor outcomes than having a low GCS score (3–8).

CONCLUSIONS

In these ways, SDH was the most important finding associated with poor outcome, and the authors show that consideration of SDH, specifically, can augment age and GCS score in classification and prognostic models for TBI.

Full access

Joseph A. Carnevale, David J. Segar, Andrew Y. Powers, Meghal Shah, Cody Doberstein, Benjamin Drapcho, John F. Morrison, John R. Williams, Scott Collins, Kristina Monteiro, and Wael F. Asaad

OBJECTIVE

Traumatic brain injury (TBI) remains a significant cause of neurological morbidity and mortality. Each year, more than 1.7 million patients present to the emergency department with TBI. The goal of this study was to evaluate the prognosis of traumatic cerebral intraparenchymal hemorrhage (tIPH), to develop subclassifications of these injuries that relate to prognosis, and to provide a more comprehensive assessment of hemorrhagic progression contusion (HPC) by analyzing the rate at which tIPH “blossom” (i.e., expansion), depending on a variety of intrinsic and modifiable factors.

METHODS

In this retrospective study, 726 patients (age range 0–100 years) were admitted to a level 1 trauma center with tIPH during an 8-year period (2005–2013). Of these patients, 491 underwent both admission and follow-up head CT (HCT) within 72 hours. The change in tIPH volume over time, the expansion rate, was recorded for all 491 patients. Effects of prehospital and in-hospital variables were examined using ordinal response logistic regression analyses. These variables were further examined using multivariate linear regression analysis to accurately predict the extent to which a hemorrhage will progress.

RESULTS

Of the 491 (67.6%) patients who underwent both admission and follow-up HCT, 368 (74.9%) patients experienced HPC. These hemorrhages expanded on average by 61.6% (4.76 ml) with an average expansion rate of 0.71 ml per hour. On univariate analysis, certain patient characteristics were significantly (p < 0.05) related to HPC, including age (> 60 years), admission Glasgow Coma Scale score, blood alcohol level, international normalized ratio, absolute platelet count, transfusion of platelets, concomitant anticoagulation and antiplatelet medication, the initial tIPH volume on admission HCT, and ventriculostomy. Increased expansion rate was significantly associated with patient disposition to hospice or death (p < 0.001). To determine which factors most accurately predict overall patient disposition, an ordinal-response logistic regression identified systolic blood pressure, Injury Severity Score, admission Glasgow Coma Scale score, follow-up scan volume, transfusion of platelets, and ventriculostomy as predictors of patient discharge disposition following tIPH. A multivariate logistic regression identified several prehospital and in-hospital variables (age, Injury Severity Score, blood alcohol level, initial scan volume, concomitant epidural hematoma, presence of subarachnoid hemorrhage, transfusion of platelets, and ventriculostomy) that predicted the volumetric expansion of tIPH. Among these variables, the admission tIPH volume by HCT proved to be the factor most predictive of HPC.

CONCLUSIONS

Several factors contribute to the rate at which traumatic cerebral contusions blossom in the acute posttraumatic period. Identifying the intrinsic and modifiable aspects of cerebral contusions can help predict the rate of expansion and highlight potential therapeutic interventions to improve TBI-associated morbidity and mortality.