Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: David E. Arsanious x
  • Refine by Access: all x
Clear All Modify Search
Restricted access

Adomas Bunevicius, Stylianos Pikis, Douglas Kondziolka, Dev N. Patel, Kenneth Bernstein, Erik P. Sulman, Cheng-chia Lee, Huai-che Yang, Violaine Delabar, David Mathieu, Christopher P. Cifarelli, David E. Arsanious, Basem A. Dahshan, Joshua S. Weir, Herwin Speckter, Angel Mota, Manjul Tripathi, Narendra Kumar, Ronald E. Warnick, and Jason P. Sheehan

OBJECTIVE

Molecular profiles, such as isocitrate dehydrogenase (IDH) mutation and O 6-methylguanine-DNA methyltransferase (MGMT) methylation status, have important prognostic roles for glioblastoma patients. The authors studied the efficacy and safety of stereotactic radiosurgery (SRS) for glioblastoma patients with consideration of molecular tumor profiles.

METHODS

For this retrospective observational multiinstitutional study, the authors pooled consecutive patients who were treated using SRS for glioblastoma at eight institutions participating in the International Radiosurgery Research Foundation. They evaluated predictors of overall and progression-free survival with consideration of IDH mutation and MGMT methylation status.

RESULTS

Ninety-six patients (median age 56 years) underwent SRS (median dose 15 Gy and median treatment volume 5.53 cm3) at 147 tumor sites (range 1 to 7). The majority of patients underwent prior fractionated radiation therapy (92%) and temozolomide chemotherapy (98%). Most patients were treated at recurrence (85%), and boost SRS was used for 12% of patients. The majority of patients harbored IDH wild-type (82%) and MGMT-methylated (62%) tumors. Molecular data were unavailable for 33 patients. Median survival durations after SRS were similar between patients harboring IDH wild-type tumors and those with IDH mutant tumors (9.0 months vs 11 months, respectively), as well as between those with MGMT-methylated tumors and those with MGMT-unmethylated tumors (9.8 vs. 9.0 months, respectively). Prescription dose > 15 Gy (OR 0.367, 95% CI 0.190–0.709, p = 0.003) and treatment volume > 5 cm3 (OR 1.036, 95% CI 1.007–1.065, p = 0.014) predicted overall survival after controlling for age and IDH status. Treatment volume > 5 cm3 (OR 2.215, 95% CI 1.159–4.234, p = 0.02) and absence of gross-total resection (OR 0.403, 95% CI 0.208–0.781, p = 0.007) were associated with inferior local control of SRS-treated lesions in multivariate models. Nine patients experienced adverse radiation events after SRS, and 7 patients developed radiation necrosis at 59 to 395 days after SRS.

CONCLUSIONS

Post-SRS survival was similar as a function of IDH mutation and MGMT promoter methylation status, suggesting that molecular profiles of glioblastoma should be considered when selecting candidates for SRS. SRS prescription dose > 15 Gy and treatment volume ≤ 5 cm3 were associated with longer survival, independent of age and IDH status. Prior gross-total resection and smaller treatment volume were associated with superior local control.

Restricted access

Ching-Jen Chen, Dale Ding, Cheng-Chia Lee, Kathryn N. Kearns, I. Jonathan Pomeraniec, Christopher P. Cifarelli, David E. Arsanious, Roman Liscak, Jaromir Hanuska, Brian J. Williams, Mehran B. Yusuf, Shiao Y. Woo, Natasha Ironside, Rebecca M. Burke, Ronald E. Warnick, Daniel M. Trifiletti, David Mathieu, Monica Mureb, Carolina Benjamin, Douglas Kondziolka, Caleb E. Feliciano, Rafael Rodriguez-Mercado, Kevin M. Cockroft, Scott Simon, Heath B. Mackley, Samer G. Zammar, Neel T. Patel, Varun Padmanaban, Nathan Beatson, Anissa Saylany, John Y. K. Lee, Jason P. Sheehan, and on behalf of the International Radiosurgery Research Foundation

OBJECTIVE

Investigations of the combined effects of neoadjuvant Onyx embolization and stereotactic radiosurgery (SRS) on brain arteriovenous malformations (AVMs) have not accounted for initial angioarchitectural features prior to neuroendovascular intervention. The aim of this retrospective, multicenter matched cohort study is to compare the outcomes of SRS with versus without upfront Onyx embolization for AVMs using de novo characteristics of the preembolized nidus.

METHODS

The International Radiosurgery Research Foundation AVM databases from 1987 to 2018 were retrospectively reviewed. Patients were categorized based on AVM treatment approach into Onyx embolization (OE) and SRS (OE+SRS) or SRS alone (SRS-only) cohorts and then propensity score matched in a 1:1 ratio. The primary outcome was AVM obliteration. Secondary outcomes were post-SRS hemorrhage, all-cause mortality, radiological and symptomatic radiation-induced changes (RICs), and cyst formation. Comparisons were analyzed using crude rates and cumulative probabilities adjusted for competing risk of death.

RESULTS

The matched OE+SRS and SRS-only cohorts each comprised 53 patients. Crude rates (37.7% vs 47.2% for the OE+SRS vs SRS-only cohorts, respectively; OR 0.679, p = 0.327) and cumulative probabilities at 3, 4, 5, and 6 years (33.7%, 44.1%, 57.5%, and 65.7% for the OE+SRS cohort vs 34.8%, 45.5%, 59.0%, and 67.1% for the SRS-only cohort, respectively; subhazard ratio 0.961, p = 0.896) of AVM obliteration were similar between the matched cohorts. The secondary outcomes of the matched cohorts were also similar. Asymptomatic and symptomatic embolization-related complication rates in the matched OE+SRS cohort were 18.9% and 9.4%, respectively.

CONCLUSIONS

Pre-SRS AVM embolization with Onyx does not appear to negatively influence outcomes after SRS. These analyses, based on de novo nidal characteristics, thereby refute previous studies that found detrimental effects of Onyx embolization on SRS-induced AVM obliteration. However, given the risks incurred by nidal embolization using Onyx, this neoadjuvant intervention should be used judiciously in multimodal treatment strategies involving SRS for appropriately selected large-volume or angioarchitecturally high-risk AVMs.

Restricted access

I. Jonathan Pomeraniec, Zhiyuan Xu, Cheng-Chia Lee, Huai-Che Yang, Tomas Chytka, Roman Liscak, Roberto Martinez-Alvarez, Nuria Martinez-Moreno, Luca Attuati, Piero Picozzi, Douglas Kondziolka, Monica Mureb, Kenneth Bernstein, David Mathieu, Michel Maillet, Akiyoshi Ogino, Hao Long, Hideyuki Kano, L. Dade Lunsford, Brad E. Zacharia, Christine Mau, Leonard C. Tuanquin, Christopher Cifarelli, David Arsanious, Joshua Hack, Ronald E. Warnick, Ben A. Strickland, Gabriel Zada, Eric L. Chang, Herwin Speckter, Samir Patel, Dale Ding, Darrah Sheehan, Kimball Sheehan, Svetlana Kvint, Love Y. Buch, Alexander R. Haber, Jacob Shteinhart, Mary Lee Vance, and Jason P. Sheehan

OBJECTIVE

Stereotactic radiosurgery (SRS) provides a safe and effective therapeutic modality for patients with pituitary adenomas. The mechanism of delayed endocrine deficits based on targeted radiation to the hypothalamic-pituitary axis remains unclear. Radiation to normal neuroendocrine structures likely plays a role in delayed hypopituitarism after SRS. In this multicenter study by the International Radiosurgery Research Foundation (IRRF), the authors aimed to evaluate radiation tolerance of structures surrounding pituitary adenomas and identify predictors of delayed hypopituitarism after SRS for these tumors.

METHODS

This is a retrospective review of patients with pituitary adenomas who underwent single-fraction SRS from 1997 to 2019 at 16 institutions within the IRRF. Dosimetric point measurements of 14 predefined neuroanatomical structures along the hypothalamus, pituitary stalk, and normal pituitary gland were made. Statistical analyses were performed to determine the impact of doses to critical structures on clinical, radiographic, and endocrine outcomes.

RESULTS

The study cohort comprised 521 pituitary adenomas treated with SRS. Tumor control was achieved in 93.9% of patients over a median follow-up period of 60.1 months, and 22.5% of patients developed new loss of pituitary function with a median treatment volume of 3.2 cm3. Median maximal radiosurgical doses to the hypothalamus, pituitary stalk, and normal pituitary gland were 1.4, 7.2, and 11.3 Gy, respectively. Nonfunctioning adenoma status, younger age, higher margin dose, and higher doses to the pituitary stalk and normal pituitary gland were independent predictors of new or worsening hypopituitarism. Neither the dose to the hypothalamus nor the ratio between doses to the pituitary stalk and gland were significant predictors. The threshold of the median dose to the pituitary stalk for new endocrinopathy was 10.7 Gy in a single fraction (OR 1.77, 95% CI 1.17–2.68, p = 0.006).

CONCLUSIONS

SRS for the treatment of pituitary adenomas affords a high tumor control rate with an acceptable risk of new or worsening endocrinopathy. This evaluation of point dosimetry to adjacent neuroanatomical structures revealed that doses to the pituitary stalk, with a threshold of 10.7 Gy, and doses to the normal gland significantly increased the risk of post-SRS hypopituitarism. In patients with preserved pre-SRS neuroendocrine function, limiting the dose to the pituitary stalk and gland while still delivering an optimal dose to the tumor appears prudent.