Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Danyal Z. Khan x
  • Refine by Access: all x
Clear All Modify Search
Free access

Danyal Z. Khan, Imanol Luengo, Santiago Barbarisi, Carole Addis, Lucy Culshaw, Neil L. Dorward, Pinja Haikka, Abhiney Jain, Karen Kerr, Chan Hee Koh, Hugo Layard Horsfall, William Muirhead, Paolo Palmisciano, Baptiste Vasey, Danail Stoyanov, and Hani J. Marcus

OBJECTIVE

Surgical workflow analysis involves systematically breaking down operations into key phases and steps. Automatic analysis of this workflow has potential uses for surgical training, preoperative planning, and outcome prediction. Recent advances in machine learning (ML) and computer vision have allowed accurate automated workflow analysis of operative videos. In this Idea, Development, Exploration, Assessment, Long-term study (IDEAL) stage 0 study, the authors sought to use Touch Surgery for the development and validation of an ML-powered analysis of phases and steps in the endoscopic transsphenoidal approach (eTSA) for pituitary adenoma resection, a first for neurosurgery.

METHODS

The surgical phases and steps of 50 anonymized eTSA operative videos were labeled by expert surgeons. Forty videos were used to train a combined convolutional and recurrent neural network model by Touch Surgery. Ten videos were used for model evaluation (accuracy, F1 score), comparing the phase and step recognition of surgeons to the automatic detection of the ML model.

RESULTS

The longest phase was the sellar phase (median 28 minutes), followed by the nasal phase (median 22 minutes) and the closure phase (median 14 minutes). The longest steps were step 5 (tumor identification and excision, median 17 minutes); step 3 (posterior septectomy and removal of sphenoid septations, median 14 minutes); and step 4 (anterior sellar wall removal, median 10 minutes). There were substantial variations within the recorded procedures in terms of video appearances, step duration, and step order, with only 50% of videos containing all 7 steps performed sequentially in numerical order. Despite this, the model was able to output accurate recognition of surgical phases (91% accuracy, 90% F1 score) and steps (76% accuracy, 75% F1 score).

CONCLUSIONS

In this IDEAL stage 0 study, ML techniques have been developed to automatically analyze operative videos of eTSA pituitary surgery. This technology has previously been shown to be acceptable to neurosurgical teams and patients. ML-based surgical workflow analysis has numerous potential uses—such as education (e.g., automatic indexing of contemporary operative videos for teaching), improved operative efficiency (e.g., orchestrating the entire surgical team to a common workflow), and improved patient outcomes (e.g., comparison of surgical techniques or early detection of adverse events). Future directions include the real-time integration of Touch Surgery into the live operative environment as an IDEAL stage 1 (first-in-human) study, and further development of underpinning ML models using larger data sets.

Open access

Jonathan P. Funnell, Kawsar Noor, Danyal Z. Khan, Linda D’Antona, Richard J. B. Dobson, John G. Hanrahan, Christopher Hepworth, Eleanor M. Moncur, Benjamin M. Thomas, Lewis Thorne, Laurence D. Watkins, Simon C. Williams, Wai Keong Wong, Ahmed K. Toma, and Hani J. Marcus

OBJECTIVE

Idiopathic normal pressure hydrocephalus (iNPH) is an underdiagnosed, progressive, and disabling condition. Early treatment is associated with better outcomes and improved quality of life. In this paper, the authors aimed to identify features associated with patients with iNPH using natural language processing (NLP) to characterize this cohort, with the intention to later target the development of artificial intelligence–driven tools for early detection.

METHODS

The electronic health records of patients with shunt-responsive iNPH were retrospectively reviewed using an NLP algorithm. Participants were selected from a prospectively maintained single-center database of patients undergoing CSF diversion for probable iNPH (March 2008–July 2020).

Analysis was conducted on preoperative health records including clinic letters, referrals, and radiology reports accessed through CogStack. Clinical features were extracted from these records as SNOMED CT (Systematized Nomenclature of Medicine Clinical Terms) concepts using a named entity recognition machine learning model.

In the first phase, a base model was generated using unsupervised training on 1 million electronic health records and supervised training with 500 double-annotated documents. The model was fine-tuned to improve accuracy using 300 records from patients with iNPH double annotated by two blinded assessors. Thematic analysis of the concepts identified by the machine learning algorithm was performed, and the frequency and timing of terms were analyzed to describe this patient group.

RESULTS

In total, 293 eligible patients responsive to CSF diversion were identified. The median age at CSF diversion was 75 years, with a male predominance (69% male). The algorithm performed with a high degree of precision and recall (F1 score 0.92).

Thematic analysis revealed the most frequently documented symptoms related to mobility, cognitive impairment, and falls or balance. The most frequent comorbidities were related to cardiovascular and hematological problems.

CONCLUSIONS

This model demonstrates accurate, automated recognition of iNPH features from medical records. Opportunities for translation include detecting patients with undiagnosed iNPH from primary care records, with the aim to ultimately improve outcomes for these patients through artificial intelligence–driven early detection of iNPH and prompt treatment.