Search Results

You are looking at 1 - 10 of 37 items for

  • Author or Editor: Daniel Park x
Clear All Modify Search
Free access

Theodore Koreckij, Daniel K. Park and Jeffrey Fischgrund

Thoracolumbar and lumbar trauma account for the majority of traumatic spinal injuries. The mainstay of current treatments is still nonoperative therapy with bracing. Classic treatment algorithms reserved absolute surgical intervention for spinal trauma patients with neurological compromise or instability. Relative indications included incapacitating pain and obesity/body habitus making brace therapy ineffective. In the past decade, minimally invasive surgical (MIS) techniques for spine surgery have been increasingly used for degenerative conditions. These same minimally invasive techniques have seen increased use in trauma patients. The goal of minimally invasive surgery is to decrease surgical morbidity through decreased soft-tissue dissection while providing the same structural stability afforded by classic open techniques. These minimally invasive techniques involve percutaneous posterior pedicle fixation, vertebral body augmentation, and utilization of endoscopic and thoracoscopic techniques. While MIS techniques are somewhat in their infancy, an increasing number of studies are reporting good clinical and radiographic outcomes with these MIS techniques. However, the literature is still lacking high-quality evidence comparing these newer techniques to classic open treatments. This article reviews the relevant literature regarding minimally invasive spine surgery in the treatment of thoracolumbar and lumbar trauma.

Restricted access

Ho-Yeon Won, Jong-Beom Park, Eun-Young Park and K. Daniel Riew

Object

Diabetes mellitus is thought to be an important etiologic factor in intervertebral disc degeneration. It is known that notochordal cells gradually disappear from the nucleus pulposus (NP) of the intervertebral disc with age by undergoing apoptosis. What is not known is whether diabetes has an effect on apoptotic rates of notochordal cells. The purpose of this study was to investigate the effect of hyperglycemia on apoptosis of notochordal cells and intervertebral disc degeneration in age-matched OLETF (diabetic) and LETO (control) rats.

Methods

Lumbar disc tissue (L1–2 through L5–6), including cranial and caudal cartilaginous endplates, was obtained from 6- and 12-month-old OLETF and LETO rats (40 rats, 10 in each of the 4 groups). The authors examined the NP using TUNEL, histological analysis, and Western blot for expression of matrix metalloproteinase (MMP)–1, -2, -3, and -13, tissue inhibitor of metalloproteinase (TIMP)–1 and -2, and Fas (apoptosis-related protein). The apoptosis index of notochordal cells was calculated. The degree of transition of notochordal NP to fibrocartilaginous NP was classified on a scale ranging from Grade 0 (no transition) to Grade 4 (transition > 75%). The degree of expression of MMP-1, -2, -3, and -13, TIMP-1 and -2, and Fas was evaluated by densitometry.

Results

At 6 and 12 months of age, OLETF rats showed increased body weight and abnormal 2-hour glucose tolerance tests compared with LETO rats. The apoptosis index of notochordal cells was significantly higher in the OLETF rats than in the LETO rats at both 6 and 12 months of age. The degree of transition of notochordal NP to fibrocartilaginous NP was significantly higher in the OLETF rats than in the LETO rats at 6 and 12 months of age. The expression of MMP-1, -2, -3, and -13, TIMP-1, and Fas was higher in the OLETF rats at 6 and 12 months of age. The expression of TIMP-2 was significantly higher in the OLETF rats than in the LETO rats at 6 months of age, but not at 12.

Conclusions

The findings suggest that diabetes is associated with premature, excessive apoptosis of NP notochordal cells. This results in an accelerated transition of a notochordal NP to a fibrocartilaginous NP, which leads to early intervertebral disc degeneration. It remains to be determined if these premature changes are due to hyperglycemia or some other factors associated with diabetes. Understanding the mechanism by which diabetes affects disc degeneration is the first step in designing therapeutic modalities to delay or prevent disc degeneration caused by diabetes mellitus.

Free access

Sang Hyun Park, Yoshua Esquenazi, David G. Kline and Daniel H. Kim

OBJECT

Iatrogenic injuries to the spinal accessory nerve (SAN) are not uncommon during lymph node biopsy of the posterior cervical triangle (PCT). In this study, the authors review the operative techniques and surgical outcomes of 156 surgical repairs of the SAN following iatrogenic injury during lymph node biopsy procedures.

METHODS

This retrospective study examines the authors’ clinical and surgical experience with 156 patients with SAN injury between 1980 and 2012. All patients suffered iatrogenic SAN injuries during lymph node biopsy, with the vast majority (154/156, 98.7%) occurring in Zone I of the PCT. Surgery was performed on the basis of anatomical and electro-physiological findings at the time of the operation. The mean follow-up period was 24 months (range 8–44 months).

RESULTS

Of the 123 patients who underwent graft or suture repair, 107 patients (87%) improved to Grade 3 functionality or higher using the Louisiana State University Health Science Center (LSUHSC) grading system. Neurolysis was performed in 29 patients (19%) when the nerve was found in continuity with recordable nerve action potential (NAP) across the lesion. More than 95% of patients treated by neurolysis with positive NAP recordings recovered to LSUHSC Grade 3 or higher. Forty-one patients (26%) underwent end-to-end repair, while 82 patients (53%) underwent graft repair, and Grade 3 or higher recovery was assessed for 90% and 85% of these patients, respectively. The average graft length used was 3.81 cm. Neurotization was performed in 4 patients, 2 of whom recovered to Grade 2 and 3, respectively.

CONCLUSIONS

SAN injuries present challenges for surgical exploration and repair because of the nerve’s size and location in the PCT. However, through proper and timely intervention, patients with diminished or absent function achieved favorable functional outcomes. Surgeons performing lymph node biopsy procedures in Zone I of the PCT should be aware of the potential risk of injury to the SAN.

Free access

Daniel M. S. Raper, Nasser Mohammed, M. Yashar S. Kalani and Min S. Park

The preferred method for treating complex dural arteriovenous fistulae of the transverse and sigmoid sinuses is via endovascular, transarterial embolization using liquid embolysate. However, this treatment approach mandates access to distal dural feeding arteries that can be technically challenging by standard endovascular approaches. This video describes a left temporal craniotomy for direct stick microcatheterization of an endovascularly inaccessible distal posterior division of the middle meningeal artery for embolization of a complex left temporal dural arteriovenous fistula. The case was performed in the hybrid operative suite with biplane intraoperative angiography. Technical considerations, operative nuances, and outcomes are reviewed.

The video can be found here: https://youtu.be/Dnd4yHgaKcQ.

Full access

Issada Thongtrangan, Hoang Le, Jon Park and Daniel H. Kim

The concept of minimally invasive spinal surgery embodies the goal of achieving clinical outcomes comparable to those of conventional open surgery, while minimizing the risk of iatrogenic injury that may be incurred during the exposure process. The development of microscopy, laser technology, endoscopy, and video and image guidance systems provided the foundation on which minimally invasive spinal surgery is based. Minimally invasive treatments have been undertaken in all areas of the spinal axis since the 20th century. Lumbar disc disease has been treated using chemonucleolysis, percutaneous discectomy, laser discectomy, intradiscal thermoablation, and minimally invasive microdiscectomy techniques. The initial use of thoracoscopy for thoracic discs and tumor biopsies has expanded to include deformity correction, sympathectomy, vertebrectomy with reconstruction and instrumentation, and resection of paraspinal neurogenic tumors. Laparoscopic techniques, such as those used for appendectomy or cholecystectomy by general surgeons, have evolved into procedures performed by spinal surgeons for anterior lumbar discectomy and fusion. Image-guided systems have been adapted to facilitate pedicle screw placement with increased accuracy. Over the past decade, minimally invasive treatment of cervical spinal disorders has become feasible by applying technologies similar to those developed for the thoracic and lumbar spine. Endoscope-assisted transoral surgery, cervical lam-inectomy, discectomy, and foraminotomy all represent the continual evolution of minimally invasive spinal surgery. Further improvement in optics and imaging resources, development of biological agents, and introduction of instrumentation systems designed for minimally invasive procedures will inevitably lead to further applications in minimally invasive spine surgery.

Free access

Anton V. Zaryanov, Daniel K. Park, Jad G. Khalil, Kevin C. Baker and Jeffrey S. Fischgrund

As a result of axial compression, traumatic vertebral burst fractures disrupt the anterior column, leading to segmental instability and cord compression. In situations with diminished anterior column support, pedicle screw fixation alone may lead to delayed kyphosis, nonunion, and hardware failure. Vertebroplasty and kyphoplasty (balloon-assisted vertebroplasty) have been used in an effort to provide anterior column support in traumatic burst fractures. Cited advantages are providing immediate stability, improving pain, and reducing hardware malfunction. When used in isolation or in combination with posterior instrumentation, these techniques theoretically allow for improved fracture reduction and maintenance of spinal alignment while avoiding the complications and morbidity of anterior approaches. Complications associated with cement use (leakage, systemic effects) are similar to those seen in the treatment of osteoporotic compression fractures; however, extreme caution must be used in fractures with a disrupted posterior wall.

Restricted access

Sung-Min Kim, T. Jesse Lim, Josemaria Paterno, Jon Park and Daniel H. Kim

Object. The stability of lateral lumbar interbody graft—augmented fusion and supplementary lateral plate fixation in human cadavers has not been determined. The purpose of this study was to investigate the immediate biomechanical stabilities of the following: 1) femoral ring allograft (FRA)—augmented anterior lumbar interbody fusion (ALIF) after left lateral discectomy combined with additional lateral MACS HMA plate and screw fixation; and 2) ALIF combined with posterior transpedicular fixation after anterior discectomy.

Methods. Sixteen human lumbosacral spines were loaded with six modes of motion. The intervertebral motion was measured using a video-based motion-capturing system. The range of motion (ROM) and the neutral zone (NZ) in each loading mode were compared with a maximum of 7.5 Nm.

The ROM values for both stand-alone ALIF approaches were similar to those of the intact spine, whereas NZ measurements were higher in most loading modes. No significant intergroup differences were found. The ROM and NZ values for lateral fixation in all modes were significantly lower than those of intact spine, except when NZ was measured in lateral bending. All ROM and NZ values for transpedicular fixation were significantly lower than those for stand-alone anterior ALIF. Transpedicular fixation conferred better stabilization than lateral fixation in flexion, extension, and lateral bending modes.

Conclusions. Neither approach to stand-alone FRA-augmented ALIF provided sufficient stabilization, but supplementary instrumentation conferred significant stabilization. The MACS HMA plate and screw fixation system, although inferior to posterior transpedicular fixation, provided adequate stability compared with the intact spine and can serve as a sound alternative to supplementary spinal stabilization.

Full access

T. S. Park, Blaise F. D. Bourgeois, Daniel L. Silbergeld and W. Edwin Dodson

Amygdalohippocampectomy (AH) is an accepted surgical option for treatment of medically refractory mesial temporal lobe epilepsy. Operative approaches to the amygdala and hippocampus that previously have been reported include: the sylvian fissure, the superior temporal sulcus, the middle temporal gyrus, and the fusiform gyrus. Regardless of the approach, AH permits not only extirpation of an epileptogenic focus in the amygdala and anterior hippocampus, but interruption of pathways of seizure spread via the entorhinal cortex and the parahippocampal gyrus. The authors report a modification of a surgical technique for AH via the parahippocampal gyrus, in which excision is limited to the anterior hippocampus, amygdala and parahippocampal gyrus while preserving the fusiform gyrus and the rest of the temporal lobe. Because transparahippocampal AH avoids injury to the fusiform gyrus and the lateral temporal lobe, it can be performed without intracarotid sodium amobarbital testing of language dominance and language mapping. Thus the operation would be particularly suitable for pediatric patients in whom intraoperative language mapping before resection is difficult.

Full access

Issada Thongtrangan, Raju S. V. Balabhadra, Hoang Le, Jon Park and Daniel H. Kim

Object

The authors report their clinical experience with expandable cages used to stabilize the spine after verte-brectomy. The objectives of surgical treatment for spine tumors include a decrease in pain, decompression of the neural elements, mechanical stabilization of the spine, and wide resection to gain local control of certain primary tumors. Most of the lesions occur in the anterior column or vertebral body (VB). Anterior column defects following resection of VBs require surgical restoration of anterior column support. Recently, various expandable cages have been developed and used clinically for VB replacement (VBR).

Methods

Between January 2001 and June 2003, the authors treated 15 patients who presented with primary spinal tumors and metastatic lesions from remote sites. All patients underwent vertebrectomy, VBR with an expandable cage, and anterior instrumentation with or without posterior instrumentation, depending on the stability of the involved segment. The correction of kyphotic angle was achieved at an average of 20°. Pain scores according to the visual analog scale decreased from 8.4 to 5.2 at the last follow-up review. Patients whose Frankel neurological grade was below D attained at least a one-grade improvement after surgery. All patients achieved immediate stability postsurgery and there were no significant complications related to the expandable cage.

Conclusions

The advantage of the expandable cage is that it is easy to use because it permits optimal fit and correction of the deformity by in vivo expansion of the device. These results are promising, but long-term follow up is required.

Restricted access

Sung-Min Kim, T. Jesse Lim, Josemaria Paterno, Jon Park and Daniel H. Kim

Object. In bilateral cervical facet dislocation, biomechanical stabilities between anterior locking screw/plate fixation after anterior cervical discectomy and fusion (ACDFP) and posterior transpedicular screw/rod fixation after anterior cervical discectomy and fusion (ACDFTP) have not been compared using the human cadaver, although ACDFP has been performed frequently. In this study the stability of ACDFP, a posterior wiring procedure after ACDFP (ACDFPW), and ACDFTP for treatment of bilateral cervical facet dislocation were compared.

Methods. Spines (C3—T1) from 10 human cadavers were tested in the intact state, and then after ACDFP, ACDFPW, and ACDFTP were performed. Intervertebral motion was measured using a video-based motion capture system. The range of motion (ROM) and neutral zone (NZ) were compared for each loading mode to a maximum of 2 Nm.

The ROM for spines treated with ACDFP was below that of the intact spine in all loading modes, with statistical significance in flexion and extension, but NZs were decreased in flexion and extension and slightly increased in bending and axial rotation; none of these showed statistical significance. The ACDFPW produced statistically significant additional stability in axial rotation ROM and in flexion NZ than ACDFP. The ACDFTP provided better stability than ACDFP in bending and axial rotation, and better stability than ACDFPW in bending for both ROM and NZ. There was no significant difference in extension with either ROM or NZ for the three fixation methods.

Conclusions. The spines treated with ACDFTP demonstrated the most effective stabilization, followed by those treated with ACDFPW, and then ACDFP. The spines receiving ACDFP also revealed a higher stability than the intact spine in most loading modes; thus ACDFP can also provide a relatively effective stabilization in bilateral cervical facet dislocation, but with the aid of a brace.