Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Daniel Letourneau x
Clear All Modify Search
Restricted access

Arjun Sahgal, Mark Bilsky, Eric L. Chang, Lijun Ma, Yoshiya Yamada, Laurence D. Rhines, Daniel Létourneau, Matthew Foote, Eugene Yu, David A. Larson and Michael G. Fehlings

Stereotactic body radiotherapy (SBRT) for spinal metastases is an emerging therapeutic option aimed at delivering high biologically effective doses to metastases while sparing the adjacent normal tissues. This technique has emerged following advances in radiation delivery that include sophisticated radiation treatment planning software, body immobilization devices, and capabilities of detecting and correcting patient positional deviations with imageguided radiotherapy. There are limited clinical data specifically supporting the role of SBRT as a superior alternative to conventional radiation in the postoperative patient. The focus of this review was to examine the evidence pertaining to spine SBRT in the treatment of spinal metastases and to provide a comprehensive analysis of published patterns of failure, with emphasis on the postoperative patient.

Full access

Michael W. Chan, Isabelle Thibault, Eshetu G. Atenafu, Eugene Yu, B. C. John Cho, Daniel Letourneau, Young Lee, Albert Yee, Michael G. Fehlings and Arjun Sahgal

OBJECT

The authors performed a pattern-of-failure analysis, with a focus on epidural disease progression, in patients treated with postoperative spine stereotactic body radiotherapy (SBRT).

METHODS

Of the 70 patients with 75 spinal metastases (cases) treated with postoperative spine SBRT, there were 26 cases of local disease recurrence and 25 cases with a component of epidural disease progression. Twenty-four of the 25 cases had preoperative epidural disease with subsequent epidural disease progression, and this cohort was the focus of this epidural-specific pattern-of-failure investigation. Preoperative, postoperative, and follow-up MRI scans were reviewed, and epidural disease was characterized based on location according to a system in which the vertebral anatomy is divided into 6 sectors, with the anterior compartment comprising Sectors 1, 2, and 6, and the posterior compartment comprising Sectors 3, 4, and 5.

RESULTS

Patterns of epidural progression are reported specifically for the 24 cases with preoperative epidural disease and subsequent epidural progression. Epidural disease progression within the posterior compartment was observed to be significantly lower in those with preoperative epidural disease confined to the anterior compartment than in those with preoperative epidural disease involving both anterior and posterior compartments (56% vs 93%, respectively; p = 0.047). In a high proportion of patients with epidural disease progression, treatment failure was found in the anterior compartment, including both those with preoperative epidural disease confined to the anterior compartment and those with preoperative epidural disease involving both anterior and posterior compartments (100% vs. 73%, respectively). When epidural disease was confined to the anterior compartment on the preoperative and postoperative MRIs, no epidural disease progression was observed in Sector 4, which is the most posterior sector. Postoperative epidural disease characteristics alone were not predictive of the pattern of epidural treatment failure.

CONCLUSIONS

Reviewing the extent of epidural disease on preoperative MRI is imperative when planning postoperative SBRT. When epidural disease is confined to the anterior epidural sectors pre- and postoperatively, covering the entire epidural space circumferentially with a prophylactic “donut” distribution may not be needed.

Full access

Ahmed Hashmi, Matthias Guckenberger, Ron Kersh, Peter C. Gerszten, Frederick Mantel, Inga S. Grills, John C. Flickinger, John H. Shin, Daniel K. Fahim, Brian Winey, Kevin Oh, B. C. John Cho, Daniel Létourneau, Jason Sheehan and Arjun Sahgal

OBJECTIVE

This study is a multi-institutional pooled analysis specific to imaging-based local control of spinal metastases in patients previously treated with conventional external beam radiation therapy (cEBRT) and then treated with re-irradiation stereotactic body radiotherapy (SBRT) to the spine as salvage therapy, the largest such study to date.

METHODS

The authors reviewed cases involving 215 patients with 247 spinal target volumes treated at 7 institutions. Overall survival was calculated on a patient basis, while local control was calculated based on the spinal target volume treated, both using the Kaplan-Meier method. Local control was defined as imaging-based progression within the SBRT target volume. Equivalent dose in 2-Gy fractions (EQD2) was calculated for the cEBRT and SBRT course using an α/β of 10 for tumor and 2 for both spinal cord and cauda equina.

RESULTS

The median total dose/number of fractions of the initial cEBRT was 30 Gy/10. The median SBRT total dose and number of fractions were 18 Gy and 1, respectively. Sixty percent of spinal target volumes were treated with single-fraction SBRT (median, 16.6 Gy and EQD2/10 = 36.8 Gy), and 40% with multiple-fraction SBRT (median 24 Gy in 3 fractions, EQD2/10 = 36 Gy). The median time interval from cEBRT to re-irradiation SBRT was 13.5 months, and the median duration of patient follow-up was 8.1 months. Kaplan-Meier estimates of 6- and 12-month overall survival rates were 64% and 48%, respectively; 13% of patients suffered a local failure, and the 6- and 12-month local control rates were 93% and 83%, respectively. Multivariate analysis identified Karnofsky Performance Status (KPS) < 70 as a significant prognostic factor for worse overall survival, and single-fraction SBRT as a significant predictive factor for better local control. There were no cases of radiation myelopathy, and the vertebral compression fracture rate was 4.5%.

CONCLUSIONS

Re-irradiation spine SBRT is effective in yielding imaging-based local control with a clinically acceptable safety profile. A randomized trial would be required to determine the optimal fractionation.