Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: Daniel Berger x
Clear All Modify Search
Restricted access

Webster H. Pilcher, Daniel L. Silbergeld, Mitchel S. Berger and George A. Ojemann

✓ Gangliogliomas are indolent neoplasms that are often associated with long-standing intractable seizures. The seizure-free outcome following ganglioglioma resection alone (or “lesionectomy”) has been generally favorable, ranging in most series from 50% to 65%. Thus, the value of resection of epileptogenic cortex in addition to tumor with regard to seizure outcome has been the subject of controversy. The authors describe a series of 12 patients with frontal or temporal lobe gangliogliomas associated with long-standing intractable seizures. In these patients, intraoperative electrocorticography was used to guide the resection of epileptogenic cortex along with tumor. Functional brain mapping, interictal and ictal monitoring of seizures, as well as thorough neuropsychological assessments were performed prior to resection in all cases. Outcome with regard to seizures, tumor recurrence, and neurological deficits was assessed with a mean follow-up period of 3.1 years. There was universal freedom from seizures postoperatively in 11 patients in whom complete or near-complete resection of epileptogenic cortex was achieved. In one patient in whom complete tumor resection and subtotal removal of epileptogenic cortex was achieved, a 95% reduction in seizure frequency was identified. No tumor recurrence or neurological deficits were observed. In a subset of four patients, neuropsychological and cognitive function were evaluated pre- and postoperatively. In these four, a clear trend toward improvement was noted in most functions. Thus, resection of epileptogenic cortex along with tumor may improve seizure outcome in selected patients with tumor-associated epilepsy without engendering identifiable neurological or cognitive deficits attributable to the incremental resection.

Full access

Stephen M. Wilson, Daniel Lam, Miranda C. Babiak, David W. Perry, Tina Shih, Christopher P. Hess, Mitchel S. Berger and Edward F. Chang

OBJECT

Transient aphasias are often observed in the first few days after a patient has undergone resection in the language-dominant hemisphere. The aims of this prospective study were to characterize the incidence and nature of these aphasias and to determine whether there are relationships between location of the surgical site and deficits in specific language domains.

METHODS

One hundred ten patients undergoing resection to the language-dominant hemisphere participated in the study. Language was evaluated prior to surgery and 2–3 days and 1 month postsurgery using the Western Aphasia Battery and the Boston Naming Test. Voxel-based lesion-symptom mapping was used to identify relationships between the surgical site location assessed on MRI and deficits in fluency, information content, comprehension, repetition, and naming.

RESULTS

Seventy-one percent of patients were classified as aphasic based on the Western Aphasia Battery 2–3 days postsurgery, with deficits observed in each of the language domains examined. Fluency deficits were associated with resection of the precentral gyrus and adjacent inferior frontal cortex. Reduced information content of spoken output was associated with resection of the ventral precentral gyrus and posterior inferior frontal gyrus (pars opercularis). Repetition deficits were associated with resection of the posterior superior temporal gyrus. Naming deficits were associated with resection of the ventral temporal cortex, with midtemporal and posterior temporal damage more predictive of naming deficits than anterior temporal damage. By 1 month postsurgery, nearly all language deficits were resolved, and no language measure except for naming differed significantly from its presurgical level.

CONCLUSIONS

These findings show that transient aphasias are very common after left hemisphere resective surgery and that the precise nature of the aphasia depends on the specific location of the surgical site. The patient cohort in this study provides a unique window into the neural basis of language because resections are discrete, their locations are not limited by vascular distribution or patterns of neurodegeneration, and language can be studied prior to substantial reorganization.

Full access

Cécile Moro, Nabil El Massri, Napoleon Torres, David Ratel, Xavier De Jaeger, Claude Chabrol, François Perraut, Alain Bourgerette, Michel Berger, Sivaraman Purushothuman, Daniel Johnstone, Jonathan Stone, John Mitrofanis and Alim-Louis Benabid

Object

Previous experimental studies have documented the neuroprotection of damaged or diseased cells after applying, from outside the brain, near-infrared light (NIr) to the brain by using external light-emitting diodes (LEDs) or laser devices. In the present study, the authors describe an effective and reliable surgical method of applying to the brain, from inside the brain, NIr to the brain. They developed a novel internal surgical device that delivers the NIr to brain regions very close to target damaged or diseased cells. They suggest that this device will be useful in applying NIr within the large human brain, particularly if the target cells have a very deep location.

Methods

An optical fiber linked to an LED or laser device was surgically implanted into the lateral ventricle of BALB/c mice or Sprague-Dawley rats. The authors explored the feasibility of the internal device, measured the NIr signal through living tissue, looked for evidence of toxicity at doses higher than those required for neuroprotection, and confirmed the neuroprotective effect of NIr on dopaminergic cells in the substantia nigra pars compacta (SNc) in an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson disease in mice.

Results

The device was stable in freely moving animals, and the NIr filled the cranial cavity. Measurements showed that the NIr intensity declined as distance from the source increased across the brain (65% per mm) but was detectable up to 10 mm away. At neuroprotective (0.16 mW) and much higher (67 mW) intensities, the NIr caused no observable behavioral deficits, nor was there evidence of tissue necrosis at the fiber tip, where radiation was most intense. Finally, the intracranially delivered NIr protected SNc cells against MPTP insult; there were consistently more dopaminergic cells in MPTP-treated mice irradiated with NIr than in those that were not irradiated.

Conclusions

In summary, the authors showed that NIr can be applied intracranially, does not have toxic side effects, and is neuroprotective.

Restricted access

Tracy R. McKnight, Mary H. von dem Bussche, Daniel B. Vigneron, Ying Lu, Mitchel S. Berger, Michael W. McDermott, William P. Dillon, Edward E. Graves, Andrea Pirzkall and Sarah J. Nelson

Object. Data obtained preoperatively from three-dimensional (3D)/proton magnetic resonance (MR) spectroscopy were compared with the results of histopathological assays of tissue biopsies obtained during surgery to verify the sensitivity and specificity of a choline-containing compound—N-acetylaspartate index (CNI) used to distinguish tumor from nontumorous tissue within T2 hyperintense and contrast-enhancing lesions of patients with untreated gliomas. The information gleaned from the biopsy correlation study was used to test the hypothesis that there is metabolically active tumor in nonenhancing regions of the T2-hyperintense lesion that can be detected using MR spectroscopy.

Methods. Patients suspected of harboring a glioma underwent 3D MR spectroscopy during their preoperative MR imaging examination. Surgical navigation techniques were used to record the location of tissue biopsies collected during open resection of the tumor. A receiver operating curve analysis of the CNI and histological characteristics of specimens at each biopsy location was performed to determine the optimal threshold of the CNI required to separate tumor from nontumorous tissue. Histograms of the CNIs within enhancing and nonenhancing regions of lesions appearing on MR images were generated to determine the spatial distribution of CNIs consistent with tumor.

Conclusions. Biopsy samples containing tumor were distinguished from those containing a mixture of normal, edematous, gliotic, and necrotic tissue with 90% sensitivity and 86% specificity by using a CNI threshold of 2.5. The CNIs of nontumorous specimens were significantly different from those of biopsy specimens containing Grade II (p < 0.03), Grade III (p < 0.005), and Grade IV (p < 0.01) tumors. On average, one third to one half of the T2-hyperintense lesion outside the contrast-enhancing lesion contained CNI greater than 2.5.

Restricted access

Jacob K. Greenberg, Donna B. Jeffe, Christopher R. Carpenter, Yan Yan, Jose A. Pineda, Angela Lumba-Brown, Martin S. Keller, Daniel Berger, Robert J. Bollo, Vijay M. Ravindra, Robert P. Naftel, Michael C. Dewan, Manish N. Shah, Erin C. Burns, Brent R. O’Neill, Todd C. Hankinson, William E. Whitehead, P. David Adelson, Mandeep S. Tamber, Patrick J. McDonald, Edward S. Ahn, William Titsworth, Alina N. West, Ross C. Brownson and David D. Limbrick Jr.

OBJECTIVE

There remains uncertainty regarding the appropriate level of care and need for repeating neuroimaging among children with mild traumatic brain injury (mTBI) complicated by intracranial injury (ICI). This study’s objective was to investigate physician practice patterns and decision-making processes for these patients in order to identify knowledge gaps and highlight avenues for future investigation.

METHODS

The authors surveyed residents, fellows, and attending physicians from the following pediatric specialties: emergency medicine; general surgery; neurosurgery; and critical care. Participants came from 10 institutions in the United States and an email list maintained by the Canadian Neurosurgical Society. The survey asked respondents to indicate management preferences for and experiences with children with mTBI complicated by ICI, focusing on an exemplar clinical vignette of a 7-year-old girl with a Glasgow Coma Scale score of 15 and a 5-mm subdural hematoma without midline shift after a fall down stairs.

RESULTS

The response rate was 52% (n = 536). Overall, 326 (61%) respondents indicated they would recommend ICU admission for the child in the vignette. However, only 62 (12%) agreed/strongly agreed that this child was at high risk of neurological decline. Half of respondents (45%; n = 243) indicated they would order a planned follow-up CT (29%; n = 155) or MRI scan (19%; n = 102), though only 64 (12%) agreed/strongly agreed that repeat neuroimaging would influence their management. Common factors that increased the likelihood of ICU admission included presence of a focal neurological deficit (95%; n = 508 endorsed), midline shift (90%; n = 480) or an epidural hematoma (88%; n = 471). However, 42% (n = 225) indicated they would admit all children with mTBI and ICI to the ICU. Notably, 27% (n = 143) of respondents indicated they had seen one or more children with mTBI and intracranial hemorrhage demonstrate a rapid neurological decline when admitted to a general ward in the last year, and 13% (n = 71) had witnessed this outcome at least twice in the past year.

CONCLUSIONS

Many physicians endorse ICU admission and repeat neuroimaging for pediatric mTBI with ICI, despite uncertainty regarding the clinical utility of those decisions. These results, combined with evidence that existing practice may provide insufficient monitoring to some high-risk children, emphasize the need for validated decision tools to aid the management of these patients.

Free access

Jacob K. Greenberg, Donna B. Jeffe, Christopher R. Carpenter, Yan Yan, Jose A. Pineda, Angela Lumba-Brown, Martin S. Keller, Daniel Berger, Robert J. Bollo, Vijay M. Ravindra, Robert P. Naftel, Michael C. Dewan, Manish N. Shah, Erin C. Burns, Brent R. O’Neill, Todd C. Hankinson, William E. Whitehead, P. David Adelson, Mandeep S. Tamber, Patrick J. McDonald, Edward S. Ahn, William Titsworth, Alina N. West, Ross C. Brownson and David D. Limbrick Jr.

OBJECTIVE

There remains uncertainty regarding the appropriate level of care and need for repeating neuroimaging among children with mild traumatic brain injury (mTBI) complicated by intracranial injury (ICI). This study’s objective was to investigate physician practice patterns and decision-making processes for these patients in order to identify knowledge gaps and highlight avenues for future investigation.

METHODS

The authors surveyed residents, fellows, and attending physicians from the following pediatric specialties: emergency medicine; general surgery; neurosurgery; and critical care. Participants came from 10 institutions in the United States and an email list maintained by the Canadian Neurosurgical Society. The survey asked respondents to indicate management preferences for and experiences with children with mTBI complicated by ICI, focusing on an exemplar clinical vignette of a 7-year-old girl with a Glasgow Coma Scale score of 15 and a 5-mm subdural hematoma without midline shift after a fall down stairs.

RESULTS

The response rate was 52% (n = 536). Overall, 326 (61%) respondents indicated they would recommend ICU admission for the child in the vignette. However, only 62 (12%) agreed/strongly agreed that this child was at high risk of neurological decline. Half of respondents (45%; n = 243) indicated they would order a planned follow-up CT (29%; n = 155) or MRI scan (19%; n = 102), though only 64 (12%) agreed/strongly agreed that repeat neuroimaging would influence their management. Common factors that increased the likelihood of ICU admission included presence of a focal neurological deficit (95%; n = 508 endorsed), midline shift (90%; n = 480) or an epidural hematoma (88%; n = 471). However, 42% (n = 225) indicated they would admit all children with mTBI and ICI to the ICU. Notably, 27% (n = 143) of respondents indicated they had seen one or more children with mTBI and intracranial hemorrhage demonstrate a rapid neurological decline when admitted to a general ward in the last year, and 13% (n = 71) had witnessed this outcome at least twice in the past year.

CONCLUSIONS

Many physicians endorse ICU admission and repeat neuroimaging for pediatric mTBI with ICI, despite uncertainty regarding the clinical utility of those decisions. These results, combined with evidence that existing practice may provide insufficient monitoring to some high-risk children, emphasize the need for validated decision tools to aid the management of these patients.

Restricted access

Oral Presentations

2010 AANS Annual Meeting Philadelphia, Pennsylvania May 1–5, 2010