Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Cordell M. Baker x
  • Refine by Access: all x
Clear All Modify Search
Restricted access

Cordell M. Baker, Andrew Parker Cox, Joshua C. Hunsaker, Jonathan Scoville, and Robert J. Bollo

OBJECTIVE

Multiple studies have evaluated the use of MRI for prognostication in pediatric patients with severe traumatic brain injury (TBI) and have found a correlation between diffuse axonal injury (DAI)–type lesions and outcome. However, there remains a limited understanding about the use of MRI for prognostication after severe TBI in children who have undergone cranial surgery.

METHODS

Children with severe TBI who underwent craniectomy or craniotomy at Primary Children’s Hospital in Salt Lake City, Utah, between 2010 and 2019 were identified retrospectively. Of these 92 patients, 43 underwent postoperative brain MRI within 4 months of surgery. Susceptibility-weighted imaging (SWI) and FLAIR sequences were used to designate areas of hemorrhagic and nonhemorrhagic cerebral lesions related to DAI. Patients were then stratified based on the location of the DAI as read by a neuroradiologist as superficial, deep, or brainstem. The location of the DAI and other variables associated with poor outcome, including Glasgow Coma Scale (GCS) score, pediatric trauma score, mechanism of injury, and time to surgery, were analyzed for correlation with poor outcome. Outcomes were reported using the King’s Outcome Scale for Childhood Head Injury (KOSCHI).

RESULTS

In the 43 children with severe TBI who underwent postoperative brain MRI, the median GCS score on arrival was 4. The most common cause of injury was falls (14 patients, 33%). The most common primary intracranial pathology was subdural hematoma in 26 patients (60%), followed by epidural hematoma in 9 (21%). Fifteen patients (35%) had cerebral herniation and 31 (72%) had evidence of contusion. Variables associated with poor outcome included cerebral herniation (r = 0.338, p = 0.027) and location of DAI (r = 0.319, p = 0.037). In a separate analysis, brainstem DAI was shown to predict poor outcome, whereas location (no, superficial, or deep DAI) did not. Logistic regression showed that brainstem DAI (OR 22.3, p = 0.020) had a higher odds ratio than cerebral herniation (OR 10.5, p = 0.044) for poor outcome. Thirty-six children (84%) had a satisfactory outcome at last follow-up; 3 (7%) children died.

CONCLUSIONS

The majority of children in this series who presented with a severe TBI and underwent craniectomy or craniotomy made a satisfactory recovery. In patients in whom there is a concern for poor outcome, the location of DAI-type lesions with SWI and FLAIR may assist in prognostication. The authors’ results revealed that DAI-type lesions in the brainstem and evidence of cerebral herniation may indicate a poorer prognosis; however, more studies with larger cohorts are needed to make definitive conclusions.

Restricted access

Cordell M. Baker, Andrew Parker Cox, Joshua C. Hunsaker, Jonathan Scoville, and Robert J. Bollo

OBJECTIVE

Multiple studies have evaluated the use of MRI for prognostication in pediatric patients with severe traumatic brain injury (TBI) and have found a correlation between diffuse axonal injury (DAI)–type lesions and outcome. However, there remains a limited understanding about the use of MRI for prognostication after severe TBI in children who have undergone cranial surgery.

METHODS

Children with severe TBI who underwent craniectomy or craniotomy at Primary Children’s Hospital in Salt Lake City, Utah, between 2010 and 2019 were identified retrospectively. Of these 92 patients, 43 underwent postoperative brain MRI within 4 months of surgery. Susceptibility-weighted imaging (SWI) and FLAIR sequences were used to designate areas of hemorrhagic and nonhemorrhagic cerebral lesions related to DAI. Patients were then stratified based on the location of the DAI as read by a neuroradiologist as superficial, deep, or brainstem. The location of the DAI and other variables associated with poor outcome, including Glasgow Coma Scale (GCS) score, pediatric trauma score, mechanism of injury, and time to surgery, were analyzed for correlation with poor outcome. Outcomes were reported using the King’s Outcome Scale for Childhood Head Injury (KOSCHI).

RESULTS

In the 43 children with severe TBI who underwent postoperative brain MRI, the median GCS score on arrival was 4. The most common cause of injury was falls (14 patients, 33%). The most common primary intracranial pathology was subdural hematoma in 26 patients (60%), followed by epidural hematoma in 9 (21%). Fifteen patients (35%) had cerebral herniation and 31 (72%) had evidence of contusion. Variables associated with poor outcome included cerebral herniation (r = 0.338, p = 0.027) and location of DAI (r = 0.319, p = 0.037). In a separate analysis, brainstem DAI was shown to predict poor outcome, whereas location (no, superficial, or deep DAI) did not. Logistic regression showed that brainstem DAI (OR 22.3, p = 0.020) had a higher odds ratio than cerebral herniation (OR 10.5, p = 0.044) for poor outcome. Thirty-six children (84%) had a satisfactory outcome at last follow-up; 3 (7%) children died.

CONCLUSIONS

The majority of children in this series who presented with a severe TBI and underwent craniectomy or craniotomy made a satisfactory recovery. In patients in whom there is a concern for poor outcome, the location of DAI-type lesions with SWI and FLAIR may assist in prognostication. The authors’ results revealed that DAI-type lesions in the brainstem and evidence of cerebral herniation may indicate a poorer prognosis; however, more studies with larger cohorts are needed to make definitive conclusions.

Full access

Allison Strickland, Cordell M. Baker, R. Michael Siatkowski, and Timothy B. Mapstone

The authors present a case of Chiari type 1.5 malformation with the uncommon presenting symptoms of esotropia and diplopia due to divergence insufficiency in a 12-year-old girl. Imaging at initial diagnosis revealed cerebellar herniation with extension of the tonsils to the C2 vertebral body, a retroflexed odontoid, and a small cervical syrinx. The patient was initially treated with an uncomplicated Chiari malformation decompression without dural opening. Repeat imaging revealed an adequate decompression. Three months postoperatively the patient’s diplopia recurred and she underwent repeat posterior fossa decompression with dural opening and duraplasty. Following repeat decompression with dural opening and duraplasty, the patient’s diplopia had not recurred by the 2-year follow-up.

https://thejns.org/doi/abs/10.3171/2018.5.PEDS1886

Free access

Christen M. O’Neal, Cordell M. Baker, Chad A. Glenn, Andrew K. Conner, and Michael E. Sughrue

The history of psychosurgery is filled with tales of researchers pushing the boundaries of science and ethics. These stories often create a dark historical framework for some of the most important medical and surgical advancements. Dr. Robert G. Heath, a board-certified neurologist, psychiatrist, and psychoanalyst, holds a debated position within this framework and is most notably remembered for his research on schizophrenia. Dr. Heath was one of the first physicians to implant electrodes in deep cortical structures as a psychosurgical intervention. He used electrical stimulation in an attempt to cure patients with schizophrenia and as a method of conversion therapy in a homosexual man. This research was highly controversial, even prior to the implementation of current ethics standards for clinical research and often goes unmentioned within the historical narrative of deep brain stimulation (DBS). While distinction between the modern practice of DBS and its controversial origins is necessary, it is important to examine Dr. Heath’s work as it allows for reflection on current neurosurgical practices and questioning the ethical implication of these advancements.

Full access

Joshua D. Burks, Andrew K. Conner, Phillip A. Bonney, Chad A. Glenn, Cordell M. Baker, Lillian B. Boettcher, Robert G. Briggs, Daniel L. O’Donoghue, Dee H. Wu, and Michael E. Sughrue

OBJECTIVE

The orbitofrontal cortex (OFC) is understood to have a role in outcome evaluation and risk assessment and is commonly involved with infiltrative tumors. A detailed understanding of the exact location and nature of associated white matter tracts could significantly improve postoperative morbidity related to declining capacity. Through diffusion tensor imaging–based fiber tracking validated by gross anatomical dissection as ground truth, the authors have characterized these connections based on relationships to other well-known structures.

METHODS

Diffusion imaging from the Human Connectome Project for 10 healthy adult controls was used for tractography analysis. The OFC was evaluated as a whole based on connectivity with other regions. All OFC tracts were mapped in both hemispheres, and a lateralization index was calculated with resultant tract volumes. Ten postmortem dissections were then performed using a modified Klingler technique to demonstrate the location of major tracts.

RESULTS

The authors identified 3 major connections of the OFC: a bundle to the thalamus and anterior cingulate gyrus, passing inferior to the caudate and medial to the vertical fibers of the thalamic projections; a bundle to the brainstem, traveling lateral to the caudate and medial to the internal capsule; and radiations to the parietal and occipital lobes traveling with the inferior fronto-occipital fasciculus.

CONCLUSIONS

The OFC is an important center for processing visual, spatial, and emotional information. Subtle differences in executive functioning following surgery for frontal lobe tumors may be better understood in the context of the fiber-bundle anatomy highlighted by this study.

Full access

Joshua D. Burks, Andrew K. Conner, Robert G. Briggs, Phillip A. Bonney, Adam D. Smitherman, Cordell M. Baker, Chad A. Glenn, Cameron A. Ghafil, Dillon P. Pryor, Kyle P. O’Connor, and Bradley N. Bohnstedt

OBJECTIVE

A shifting emphasis on efficient utilization of hospital resources has been seen in recent years. However, reduced screening for blunt vertebral artery injury (BVAI) may result in missed diagnoses if risk factors are not fully understood. The authors examined the records of blunt trauma patients with fractures near the craniocervical junction who underwent CTA at a single institution to better understand the risk of BVAI imposed by occipital condyle fractures (OCFs).

METHODS

The authors began with a query of their prospectively collected trauma registry to identify patients who had been screened for BVAI using ICD-9-CM diagnostic codes. Grade and segment were recorded in instances of BVAI. Locations of fractures were classified into 3 groups: 1) OCFs, 2) C1 (atlas) fractures, and 3) fractures of the C2–6 vertebrae. Univariate and multivariate analyses were performed to identify any fracture types associated with BVAI.

RESULTS

During a 6-year period, 719 patients underwent head and neck CTA following blunt trauma. Of these patients, 147 (20%) had OCF. BVAI occurred in 2 of 43 patients with type I OCF, 1 of 42 with type II OCF, and in 9 of 62 with type III OCF (p = 0.12). Type III OCF was an independent risk factor for BVAI in multivariate modeling (OR 2.29 [95% CI 1.04–5.04]), as were fractures of C1–6 (OR 5.51 [95% CI 2.57–11.83]). Injury to the V4 segment was associated with type III OCF (p < 0.01).

CONCLUSIONS

In this study, the authors found an association between type III OCF and BVAI. While further study may be necessary to elucidate the mechanism of injury in these cases, this association suggests that thorough cerebrovascular evaluation is warranted in patients with type III OCF.

Full access

Andrew K. Conner, Joshua D. Burks, Cordell M. Baker, Adam D. Smitherman, Dillon P. Pryor, Chad A. Glenn, Robert G. Briggs, Phillip A. Bonney, and Michael E. Sughrue

OBJECTIVE

The purpose of this study was to describe a method of resecting temporal gliomas through a keyhole lobectomy and to share the results of using this technique.

METHODS

The authors performed a retrospective review of data obtained in all patients in whom the senior author performed resection of temporal gliomas between 2012 and 2015. The authors describe their technique for resecting dominant and nondominant gliomas, using both awake and asleep keyhole craniotomy techniques.

RESULTS

Fifty-two patients were included in the study. Twenty-six patients (50%) had not received prior surgery. Seventeen patients (33%) were diagnosed with WHO Grade II/III tumors, and 35 patients (67%) were diagnosed with a glioblastoma. Thirty tumors were left sided (58%). Thirty procedures (58%) were performed while the patient was awake. The median extent of resection was 95%, and at least 90% of the tumor was resected in 35 cases (67%). Five of 49 patients (10%) with clinical follow-up experienced permanent deficits, including 3 patients (6%) with hydrocephalus requiring placement of a ventriculoperitoneal shunt and 2 patients (4%) with weakness. Three patients experienced early postoperative anomia, but no patients had a new speech deficit at clinical follow-up.

CONCLUSIONS

The authors provide their experience using a keyhole lobectomy for resecting temporal gliomas. Their data demonstrate the feasibility of using less invasive techniques to safely and aggressively treat these tumors.

Restricted access

Vijay M. Ravindra, Al-Wala Awad, Cordell M. Baker, Amy Lee, Richard C. E. Anderson, Barbu Gociman, Kamlesh B. Patel, Matthew D. Smyth, Craig Birgfeld, Ian F. Pollack, Jesse A. Goldstein, Thomas Imahiyerobo, Faizi A. Siddiqi, John R. W. Kestle, and for the Synostosis Research Group (SynRG)

OBJECTIVE

The diagnosis of single-suture craniosynostosis can be made by physical examination, but the use of confirmatory imaging is common practice. The authors sought to investigate preoperative imaging use and to describe intracranial findings in children with single-suture synostosis from a large, prospective multicenter cohort.

METHODS

In this study from the Synostosis Research Group, the study population included children with clinically diagnosed single-suture synostosis between March 1, 2017, and October 31, 2020, at 5 institutions. The primary analysis correlated the clinical diagnosis and imaging diagnosis; secondary outcomes included intracranial findings by pathological suture type.

RESULTS

A total of 403 children (67% male) were identified with single-suture synostosis. Sagittal (n = 267), metopic (n = 77), coronal (n = 52), and lambdoid (n = 7) synostoses were reported; the most common presentation was abnormal head shape (97%), followed by a palpable or visible ridge (37%). Preoperative cranial imaging was performed in 90% of children; findings on 97% of these imaging studies matched the initial clinical diagnosis. Thirty-one additional fused sutures were identified in 18 children (5%) that differed from the clinical diagnosis. The most commonly used imaging modality by far was CT (n = 360), followed by radiography (n = 9) and MRI (n = 7). Most preoperative imaging was ordered as part of a protocolized pathway (67%); some images were obtained as a result of a nondiagnostic clinical examination (5.2%). Of the 360 patients who had CT imaging, 150 underwent total cranial vault surgery and 210 underwent strip craniectomy. The imaging findings influenced the surgical treatment 0.95% of the time. Among the 24% of children with additional (nonsynostosis) abnormal findings on CT, only 3.5% required further monitoring.

CONCLUSIONS

The authors found that a clinical diagnosis of single-suture craniosynostosis and the findings on CT were the same with rare exceptions. CT imaging very rarely altered the surgical treatment of children with single-suture synostosis.

Free access

Cordell M. Baker, Vijay M. Ravindra, Barbu Gociman, Faizi A. Siddiqi, Jesse A. Goldstein, Matthew D. Smyth, Amy Lee, Richard C. E. Anderson, Kamlesh B. Patel, Craig Birgfeld, Ian F. Pollack, Thomas Imahiyerobo, John R. W. Kestle, and for the Synostosis Research Group

OBJECTIVE

Sagittal synostosis is the most common form of isolated craniosynostosis. Although some centers have reported extensive experience with this condition, most reports have focused on a single center. In 2017, the Synostosis Research Group (SynRG), a multicenter collaborative network, was formed to study craniosynostosis. Here, the authors report their early experience with treating sagittal synostosis in the network. The goals were to describe practice patterns, identify variations, and generate hypotheses for future research.

METHODS

All patients with a clinical diagnosis of isolated sagittal synostosis who presented to a SynRG center between March 1, 2017, and October 31, 2019, were included. Follow-up information through October 31, 2020, was included. Data extracted from the prospectively maintained SynRG registry included baseline parameters, surgical adjuncts and techniques, complications prior to discharge, and indications for reoperation. Data analysis was descriptive, using frequencies for categorical variables and means and medians for continuous variables.

RESULTS

Two hundred five patients had treatment for sagittal synostosis at 5 different sites. One hundred twenty-six patients were treated with strip craniectomy and 79 patients with total cranial vault remodeling. The most common strip craniectomy was wide craniectomy with parietal wedge osteotomies (44%), and the most common cranial vault remodeling procedure was total vault remodeling without forehead remodeling (63%). Preoperative mean cephalic indices (CIs) were similar between treatment groups: 0.69 for strip craniectomy and 0.68 for cranial vault remodeling. Thirteen percent of patients had other health problems. In the cranial vault cohort, 81% of patients who received tranexamic acid required a transfusion compared with 94% of patients who did not receive tranexamic acid. The rates of complication were low in all treatment groups. Five patients (2%) had an unintended reoperation. The mean change in CI was 0.09 for strip craniectomy and 0.06 for cranial vault remodeling; wide craniectomy resulted in a greater change in CI in the strip craniectomy group.

CONCLUSIONS

The baseline severity of scaphocephaly was similar across procedures and sites. Treatment methods varied, but cranial vault remodeling and strip craniectomy both resulted in satisfactory postoperative CIs. Use of tranexamic acid may reduce the need for transfusion in cranial vault cases. The wide craniectomy technique for strip craniectomy seemed to be associated with change in CI. Both findings seem amenable to testing in a randomized controlled trial.