Search Results

You are looking at 1 - 10 of 29 items for

  • Author or Editor: Clinton J. Devin x
Clear All Modify Search
Free access

Matthew J. McGirt, Ahilan Sivaganesan, Anthony L. Asher and Clinton J. Devin

OBJECT

Lumbar spine surgery has been demonstrated to be efficacious for many degenerative spine conditions. However, there is wide variability in outcome after spine surgery at the individual patient level. All stakeholders in spine care will benefit from identification of the unique patient or disease subgroups that are least likely to benefit from surgery, are prone to costly complications, and have increased health care utilization. There remains a large demand for individual patient-level predictive analytics to guide decision support to optimize outcomes at the patient and population levels.

METHODS

One thousand eight hundred three consecutive patients undergoing spine surgery for various degenerative lumbar diagnoses were prospectively enrolled and followed for 1 year. A comprehensive patient interview and health assessment was performed at baseline and at 3 and 12 months after surgery. All predictive covariates were selected a priori. Eighty percent of the sample was randomly selected for model development, and 20% for model validation. Linear regression was performed with Bayesian model averaging to model 12-month ODI (Oswestry Disability Index). Logistic regression with Bayesian model averaging was used to model likelihood of complications, 30-day readmission, need for inpatient rehabilitation, and return to work. Goodness-of-fit was assessed via R2 for 12-month ODI and via the c-statistic, area under the receiver operating characteristic curve (AUC), for the categorical endpoints. Discrimination (predictive performance) was assessed, using R2 for the ODI model and the c-statistic for the categorical endpoint models. Calibration was assessed using a plot of predicted versus observed values for the ODI model and the Hosmer-Lemeshow test for the categorical endpoint models.

RESULTS

On average, all patient-reported outcomes (PROs) were improved after surgery (ODI baseline vs 12 month: 50.4 vs 29.5%, p < 0.001). Complications occurred in 121 patients (6.6%), 108 (5.9%) were readmitted within 30 days of surgery, 188 (10.3%) required discharge to inpatient rehabilitation, 1630 (88.9%) returned to work, and 449 (24.5%) experienced an unplanned outcome (no improvement in ODI, a complication, or readmission). There were 45 unique baseline variable inputs, derived from 39 clinical variables and 38 questionnaire items (ODI, SF-12, MSPQ, VAS-BP, VAS-LP, VAS-NP), included in each model. For prediction of 12-month ODI, R2 was 0.51 for development and 0.47 for the validation study. For prediction of a complication, readmission, inpatient rehabilitation, and return to work, AUC values ranged 0.72-0.84 for development and 0.79-0.84 for validation study.

CONCLUSIONS

A novel prediction model utilizing both clinical data and patient interview inputs explained the majority of variation in outcome observed after lumbar spine surgery and reliably predicted 12-month improvement in physical disability, return to work, major complications, readmission, and need for inpatient rehabilitation for individual patients. Application of these models may allow clinicians to offer spine surgery specifically to those who are most likely to benefit and least likely to incur complications and excess costs.

Free access

Scott L. Parker, Anthony L. Asher, Saniya S. Godil, Clinton J. Devin and Matthew J. McGirt

OBJECT

The health care landscape is rapidly shifting to incentivize quality of care rather than quantity of care. Quality and outcomes registry platforms lie at the center of all emerging evidence-driven reform models and will be used to inform decision makers in health care delivery. Obtaining real-world registry outcomes data from patients 12 months after spine surgery remains a challenge. The authors set out to determine whether 3-month patient-reported outcomes accurately predict 12-month outcomes and, hence, whether 3-month measurement systems suffice to identify effective versus noneffective spine care.

METHODS

All patients undergoing lumbar spine surgery for degenerative disease at a single medical institution over a 2-year period were enrolled in a prospective longitudinal registry. Patient-reported outcome instruments (numeric rating scale [NRS], Oswestry Disability Index [ODI], 12-Item Short Form Health Survey [SF-12], EQ-5D, and the Zung Self-Rating Depression Scale) were recorded prospectively at baseline and at 3 months and 12 months after surgery. Linear regression was performed to determine the independent association of 3- and 12-month outcome. Receiver operating characteristic (ROC) curve analysis was performed to determine whether improvement in general health state (EQ-5D) and disability (ODI) at 3 months accurately predicted improvement and achievement of minimum clinical important difference (MCID) at 12 months.

RESULTS

A total of 593 patients undergoing elective lumbar surgery were included in the study. There was a significant correlation between 3-month and 12-month EQ-5D (r = 0.71; p < 0.0001) and ODI (r = 0.70; p < 0.0001); however, the authors observed a sizable discrepancy in achievement of a clinically significant improvement (MCID) threshold at 3 versus 12 months on an individual patient level. For postoperative disability (ODI), 11.5% of patients who achieved an MCID threshold at 3 months dropped below this threshold at 12 months; 10.5% of patients who did not meet the MCID threshold at 3 months continued to improve and ultimately surpassed the MCID threshold at 12 months. For ODI, achieving MCID at 3 months accurately predicted 12-month MCID with only 62.6% specificity and 86.8% sensitivity. For postoperative health utility (EQ-5D), 8.5% of patients lost an MCID threshold improvement from 3 months to 12 months, while 4.0% gained the MCID threshold between 3 and 12 months postoperatively. For EQ-5D (quality-adjusted life years), achieving MCID at 3 months accurately predicted 12-month MCID with only 87.7% specificity and 87.2% sensitivity.

CONCLUSIONS

In a prospective registry, patient-reported measures of treatment effectiveness obtained at 3 months correlated with 12-month measures overall in aggregate, but did not reliably predict 12-month outcome at the patient level. Many patients who do not benefit from surgery by 3 months do so by 12 months, and, conversely, many patients reporting meaningful improvement by 3 months report loss of benefit at 12 months. Prospective longitudinal spine outcomes registries need to span at least 12 months to identify effective versus noneffective patient care.

Free access

Matthew J. McGirt, Saniya S. Godil, Anthony L. Asher, Scott L. Parker and Clinton J. Devin

OBJECT

In an era of escalating health care cost and universal pressure of improving efficiency and cost of care, ambulatory surgery centers (ASCs) have emerged as lower cost options for many surgical therapies. Anterior cervical discectomy and fusion (ACDF) is one of the most prevalent spine surgeries performed and is rapidly increasing with an expanding aging population. While ASCs offer cost advantages for ACDF, there is a scarcity of evidence that ASCs allow for equivalent quality and thus superior health care value. Therefore, the authors analyzed a nationwide, prospective quality improvement registry (National Surgical Quality Improvement Program [NSQIP]) to compare the quality of ACDF surgery performed in the outpatient ASC versus the inpatient hospital setting.

METHODS

Patients undergoing ACDF (2005-2011) were identified from the NSQIP database based on the primary Current Procedural Terminology codes. Patients were divided into 2 cohorts (outpatient vs inpatient) based on the acute care setting documented in the NSQIP database. All 30-day surgical morbidity and mortality rates were compared between the 2 groups. Propensity score matching and multivariate logistic regression analysis were used to adjust for confounding factors and to identify the independent association of outpatient ACDF with perioperative outcomes and morbidity.

RESULTS

A total of 7288 ACDF cases were identified (inpatient = 6120, outpatient = 1168). Unadjusted rates of major morbidity (0.94% vs 4.5%, p < 0.001) and return to the operating room (OR) within 30 days (0.3% vs 2.0%, p < 0.001) were significantly lower in outpatient versus inpatient ACDF. After propensity matching 1442 cases (inpatient = 650, outpatient = 792) based on baseline 32 covariates, rates of major morbidity (1.4% vs 3.1%, p = 0.03), and return to the OR (0.34% vs 1.4%, p = 0.04) remained significantly lower after outpatient ACDF. Adjusted comparison using multivariate logistic regression demonstrated that ACDF performed in the outpatient setting had 58% lower odds of having a major morbidity and 80% lower odds of return to the OR within 30 days.

CONCLUSIONS

An analysis of a nationwide, prospective quality improvement registry representing more than 250 hospitals demonstrates that 1- to 2-level ACDF can be safely performed in the outpatient ambulatory surgery setting in patients who are appropriate candidates. In an effort to decrease cost of care, surgeons can safely consider performing ACDF in an ASC environment.

Restricted access

Scott L. Parker, Ahilan Sivaganesan, Silky Chotai, Matthew J. McGirt, Anthony L. Asher and Clinton J. Devin

OBJECTIVE

Hospital readmissions lead to a significant increase in the total cost of care in patients undergoing elective spine surgery. Understanding factors associated with an increased risk of postoperative readmission could facilitate a reduction in such occurrences. The aims of this study were to develop and validate a predictive model for 90-day hospital readmission following elective spine surgery.

METHODS

All patients undergoing elective spine surgery for degenerative disease were enrolled in a prospective longitudinal registry. All 90-day readmissions were prospectively recorded. For predictive modeling, all covariates were selected by choosing those variables that were significantly associated with readmission and by incorporating other relevant variables based on clinical intuition and the Akaike information criterion. Eighty percent of the sample was randomly selected for model development and 20% for model validation. Multiple logistic regression analysis was performed with Bayesian model averaging (BMA) to model the odds of 90-day readmission. Goodness of fit was assessed via the C-statistic, that is, the area under the receiver operating characteristic curve (AUC), using the training data set. Discrimination (predictive performance) was assessed using the C-statistic, as applied to the 20% validation data set.

RESULTS

A total of 2803 consecutive patients were enrolled in the registry, and their data were analyzed for this study. Of this cohort, 227 (8.1%) patients were readmitted to the hospital (for any cause) within 90 days postoperatively. Variables significantly associated with an increased risk of readmission were as follows (OR [95% CI]): lumbar surgery 1.8 [1.1–2.8], government-issued insurance 2.0 [1.4–3.0], hypertension 2.1 [1.4–3.3], prior myocardial infarction 2.2 [1.2–3.8], diabetes 2.5 [1.7–3.7], and coagulation disorder 3.1 [1.6–5.8]. These variables, in addition to others determined a priori to be clinically relevant, comprised 32 inputs in the predictive model constructed using BMA. The AUC value for the training data set was 0.77 for model development and 0.76 for model validation.

CONCLUSIONS

Identification of high-risk patients is feasible with the novel predictive model presented herein. Appropriate allocation of resources to reduce the postoperative incidence of readmission may reduce the readmission rate and the associated health care costs.

Restricted access

Saniya S. Godil, Scott L. Parker, Kevin R. O'Neill, Clinton J. Devin and Matthew J. McGirt

Object

Surgical site infection (SSI) is a morbid complication with high cost in spine surgery. In this era of health care reforms, adjuvant therapies that not only improve quality but also decrease cost are considered of highest value. The authors introduced local application of vancomycin powder into their practice of posterior spinal fusion for spine trauma and undertook this study to determine the value and cost benefit of using vancomycin powder in surgical sites to prevent postoperative infections.

Methods

A retrospective review of 110 patients with traumatic spine injuries treated with instrumented posterior spine fusions over a 2-year period at a single institution was performed. One group (control group) received standard systemic prophylaxis only, whereas another (treatment group) received 1 g of locally applied vancomycin powder (spread over the surgical wound) in addition to systemic prophylaxis. Data were collected on patient demographic characteristics, clinical variables, surgical variables, and 90-day morbidity. Incidence of infection was the primary outcome evaluated, and billing records were reviewed to determine total infection-related medical cost (cost of reoperation/wound debridement, medications, and diagnostic tests). The payer's cost was estimated to be 70% of the total billing cost.

Results

A total of 110 patients were included in the study. The control (n = 54) and treatment groups (n = 56) were similar at baseline. Use of vancomycin powder led to significant reduction in infection rate (13% infection rate in the control group vs 0% in the treatment group, p = 0.02). There were no adverse effects noted from the use of vancomycin powder. The total mean cost of treating postoperative infection per patient was $33,705. Use of vancomycin powder led to a cost savings of $438,165 per 100 posterior spinal fusions performed for traumatic injuries.

Conclusions

The use of adjuvant vancomycin powder was associated with a significant reduction in the incidence of postoperative infection as well as infection-related medical cost. These findings suggest that use of adjuvant vancomycin powder in high-risk patients undergoing spinal fusion is a cost-saving option for preventing postoperative infections, as it can lead to cost-savings of $438,165 per 100 spinal fusions performed.

Free access

Anthony L. Asher, Clinton J. Devin, Robert E. Harbaugh and Mohamad Bydon

Free access

Silky Chotai, Scott L. Parker, Ahilan Sivaganesan, J. Alex Sielatycki, Anthony L. Asher, Matthew J. McGirt and Clinton J. Devin

OBJECT

There is a paradigm shift toward rewarding providers for quality rather than volume. Complications appear to occur at a fairly consistent frequency in large aggregate data sets. Understanding how complications affect long-term patient-reported outcomes (PROs) following degenerative lumbar surgery is vital. The authors hypothesized that 90-day complications would adversely affect long-term PROs.

METHODS

Nine hundred six consecutive patients undergoing elective surgery for degenerative lumbar disease over a period of 4 years were enrolled into a prospective longitudinal registry. The following PROs were recorded at baseline and 12-month follow-up: Oswestry Disability Index (ODI) score, numeric rating scales for back and leg pain, quality of life (EQ-5D scores), general physical and mental health (SF-12 Physical Component Summary [PCS] and Mental Component Summary [MCS] scores) and responses to the North American Spine Society (NASS) satisfaction questionnaire. Previously published minimum clinically important difference (MCID) threshold were used to define meaningful improvement. Complications were divided into major (surgicalsite infection, hardware failure, new neurological deficit, pulmonary embolism, hematoma and myocardial infarction) and minor (urinary tract infection, pneumonia, and deep venous thrombosis).

RESULTS

Complications developed within 90 days of surgery in 13% (118) of the patients (major in 12% [108] and minor in 8% [68]). The mean improvement in ODI scores, EQ-5D scores, SF-12 PCS scores, and satisfaction at 3 months after surgery was significantly less in the patients with complications than in those who did not have major complications (ODI: 13.5 ± 21.2 vs 21.7 ± 19, < 0.0001; EQ-5D: 0.17 ± 0.25 vs 0.23 ± 0.23, p = 0.04; SF-12 PCS: 8.6 ± 13.3 vs 13.0 ± 11.9, 0.001; and satisfaction: 76% vs 90%, p = 0.002). At 12 months after surgery, the patients with major complications had higher ODI scores than those without complications (29.1 ± 17.7 vs 25.3 ± 18.3, p = 0.02). However, there was no difference in the change scores in ODI and absolute scores across all other PROs between the 2 groups. In multivariable linear regression analysis, after controlling for an array of preoperative variables, the occurrence of a major complication was not associated with worsening ODI scores 12 months after surgery. There was no difference in the percentage of patients achieving the MCID for disability (66% vs 64%), back pain (55% vs 56%), leg pain (62% vs 59%), or quality of life (19% vs 14%) or in patient satisfaction rates (82% vs 80%) between those without and with major complications.

CONCLUSIONS

Major complications within 90 days following lumbar spine surgery have significant impact on the short-term PROs. Patients with complications, however, do eventually achieve clinically meaningful outcomes and report satisfaction equivalent to those without major complications. This information allows a physician to counsel patients on the fact that a complication creates frustration, cost, and inconvenience; however, it does not appear to adversely affect clinically meaningful long-term outcomes and satisfaction.

Restricted access

Scott L. Parker, Stephen K. Mendenhall, David N. Shau, Owoicho Adogwa, William N. Anderson, Clinton J. Devin and Matthew J. McGirt

Object

Spine surgery outcome studies rely on patient-reported outcome (PRO) measurements to assess treatment effect, but the extent of improvement in the numerical scores of these questionnaires lacks a direct clinical meaning. Because of this, the concept of a minimum clinically important difference (MCID) has been used to measure the critical threshold needed to achieve clinically relevant treatment effectiveness. As utilization of spinal fusion has increased over the past decade, so has the incidence of same-level recurrent stenosis following index lumbar fusion, which commonly requires revision decompression and fusion. The MCID remains uninvestigated for any PROs in the setting of revision lumbar surgery for this pathology.

Methods

In 53 consecutive patients undergoing revision surgery for same-level recurrent lumbar stenosis–associated back and leg pain, PRO measures of back and leg pain were assessed preoperatively and 2 years postoperatively, using the visual analog scale for back pain (VAS-BP) and leg pain (VAS-LP), Oswestry Disability Index (ODI), Physical and Mental Component Summary categories of the 12-Item Short Form Health Survey (SF-12 PCS and MCS) for quality of life, Zung Depression Scale (ZDS), and EuroQol-5D health survey (EQ-5D). Four established anchor-based MCID calculation methods were used to calculate MCID (average change; minimum detectable change; change difference; and receiver operating characteristic curve analysis) for 2 separate anchors (health transition index of the SF-36 and the satisfaction index).

Results

All patients were available for 2-year PRO assessment. Two years after surgery, a significant improvement was observed for all PROs assessed. The 4 MCID calculation methods generated a range of MCID values for each of the PROs (VAS-BP 2.2–6.0, VAS-LP 3.9–7.5, ODI 8.2–19.9, SF-12 PCS 2.5–12.1, SF-12 MCS 7.0–15.9, ZDS 3.0–18.6, and EQ-5D 0.29–0.52). Each patient answered synchronously for the 2 anchors, suggesting both of these anchors are equally appropriate and valid for this patient population.

Conclusions

The same-level recurrent stenosis surgery-specific MCID is highly variable based on calculation technique. The “minimum detectable change” approach is the most appropriate method for calculation of MCIDs in this population because it was the only method to reliably provide a threshold above the 95% confidence interval of the unimproved cohort (greater than the measurement error). Based on this method, the MCID thresholds following neural decompression and fusion for symptomatic same-level recurrent stenosis are 2.2 points for VAS-BP, 5.0 points for VAS-LP, 8.2 points for ODI, 2.5 points for SF-12 PCS, 10.1 points for SF-12 MCS, 4.9 points for ZDS, and 0.39 QALYs for EQ-5D.

Restricted access

Owoicho Adogwa, Scott L. Parker, Brandon J. Davis, Oran Aaronson, Clinton Devin, Joseph S. Cheng and Matthew J. McGirt

Object

Transforaminal lumbar interbody fusion (TLIF) for spondylolisthesis-associated back and leg pain is associated with improvement in pain, disability, and quality of life. However, given the rising health care costs associated with spinal fusion procedures and varying results of recent cost-utility studies, the cost-effectiveness of TLIF remains unclear. The authors set out to assess the comprehensive costs of TLIF at their institution and to determine its cost-effectiveness in the treatment of degenerative spondylolisthesis.

Methods

Forty-five patients undergoing TLIF for Grade I degenerative spondylolisthesis–associated back and leg pain after 6–12 months of conservative therapy were included. The authors assessed the 2-year back pain visual analog scale (VAS) score, leg pain VAS score, Oswestry Disability Index, and total back-related medical resource utilization, missed work, and health-state values (quality-adjusted life years [QALYs], calculated from EQ-5D with US valuation). Two-year resource use was multiplied by unit costs based on Medicare national allowable payment amounts (direct cost), and patient and caregiver workday losses were multiplied by the self-reported gross-of-tax wage rate (indirect cost). The mean total 2-year cost per QALY gained after TLIF was assessed.

Results

Compared with preoperative health states reported after at least 6 months of medical management, a significant improvement in back pain VAS score, leg pain VAS score, and Oswestry Disability Index was observed 2 years after TLIF, with a mean 2-year gain of 0.86 QALYs. The mean ± SD total 2-year cost of TLIF was $36,836 ± $11,800 (surgery cost, $21,311 ± $2800; outpatient resource utilization cost, $3940 ± $2720; indirect cost, $11,584 ± $11,363). Transforaminal lumbar interbody fusion was associated with a mean 2-year cost per QALY gained of $42,854.

Conclusions

Transforaminal lumbar interbody fusion improved pain, disability, and quality of life in patients with degenerative spondylolisthesis–associated back and leg pain. The total cost per QALY gained for TLIF was $42,854 when evaluated 2 years after surgery with Medicare fees, suggesting that TLIF is a cost-effective treatment of lumbar spondylolisthesis.

Restricted access

Owoicho Adogwa, Scott L. Parker, David N. Shau, Stephen K. Mendenhall, Clinton J. Devin, Joseph S. Cheng and Matthew J. McGirt

Object

Over the past decade, there has been a dramatic increase in the number of spinal fusions performed in the US and a corresponding increase in the incidence of adjacent-segment disease (ASD). Surgical management of symptomatic ASD consists of decompression of neural elements and extension of fusion. It has been shown to have favorable long-term outcomes, but the cost-effectiveness remains unclear. In this study, the authors set out to assess the cost-effectiveness of revision surgery in the treatment of ASD over a 2-year period.

Methods

Fifty patients undergoing neural decompression and extension of fusion construct for ASD-associated back and leg pain were included in the study. Two-year total back-related medical resource utilization, missed work, and health state values (quality-adjusted life years [QALYs], calculated from the EQ-5D with US valuation) were assessed. Two-year resource use was multiplied by unit costs based on Medicare national allowable payment amounts (direct cost), and patient and caregiver workday losses were multiplied by the self-reported gross-of-tax wage rate (indirect cost). Mean total 2-year cost per QALY gained after revision surgery was assessed.

Results

The mean (± SD) interval between prior fusion and revision surgery for ASD was 3.07 ± 2.02 years. A mean cumulative 2-year gain of 0.76 QALYs was observed after revision surgery. The mean total 2-year cost of extension of fusion constructs was $47,846 ± $32,712 (surgery cost: $24,063 ± $300; outpatient resource utilization cost: $4175 ± $3368; indirect cost: $19,607 ± $32,187). Revision decompression and extension of fusion was associated with a mean 2-year cost per QALY gained of $62,955.

Conclusions

In the authors' practice, revision decompression and extension of fusion provided a significant gain in health state utility for patients with symptomatic ASD, with a 2-year cost per QALY gained of $62,995. When indicated, revision surgery for ASD is a valuable treatment option for patients experiencing back and leg pain secondary to ASD. The findings provide a value measure of surgery that can be compared with future cost-per-QALY-gained studies of medical management or alternative surgical approaches.