Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Clement T. Chow x
  • All content x
Clear All Modify Search
Restricted access

Alexandre Boutet, Aaron Loh, Clement T. Chow, Alaa Taha, Gavin J. B. Elias, Clemens Neudorfer, Jurgen Germann, Michelle Paff, Ludvic Zrinzo, Alfonso Fasano, Suneil K. Kalia, Christopher J. Steele, David Mikulis, Walter Kucharczyk, and Andres M. Lozano

OBJECTIVE

Historically, preoperative planning for functional neurosurgery has depended on the indirect localization of target brain structures using visible anatomical landmarks. However, recent technological advances in neuroimaging have permitted marked improvements in MRI-based direct target visualization, allowing for refinement of “first-pass” targeting. The authors reviewed studies relating to direct MRI visualization of the most common functional neurosurgery targets (subthalamic nucleus, globus pallidus, and thalamus) and summarize sequence specifications for the various approaches described in this literature.

METHODS

The peer-reviewed literature on MRI visualization of the subthalamic nucleus, globus pallidus, and thalamus was obtained by searching MEDLINE. Publications examining direct MRI visualization of these deep brain stimulation targets were included for review.

RESULTS

A variety of specialized sequences and postprocessing methods for enhanced MRI visualization are in current use. These include susceptibility-based techniques such as quantitative susceptibility mapping, which exploit the amount of tissue iron in target structures, and white matter attenuated inversion recovery, which suppresses the signal from white matter to improve the distinction between gray matter nuclei. However, evidence confirming the superiority of these sequences over indirect targeting with respect to clinical outcome is sparse. Future targeting may utilize information about functional and structural networks, necessitating the use of resting-state functional MRI and diffusion-weighted imaging.

CONCLUSIONS

Specialized MRI sequences have enabled considerable improvement in the visualization of common deep brain stimulation targets. With further validation of their ability to improve clinical outcomes and advances in imaging techniques, direct visualization of targets may play an increasingly important role in preoperative planning.

Free access

Alexandre Boutet, Gavin J. B. Elias, Robert Gramer, Clemens Neudorfer, Jürgen Germann, Asma Naheed, Nicole Bennett, Bryan Li, Dave Gwun, Clement T. Chow, Ricardo Maciel, Alejandro Valencia, Alfonso Fasano, Renato P. Munhoz, Warren Foltz, David Mikulis, Ileana Hancu, Suneil K. Kalia, Mojgan Hodaie, Walter Kucharczyk, and Andres M. Lozano

OBJECTIVE

Many centers are hesitant to perform clinically indicated MRI in patients who have undergone deep brain stimulation (DBS). Highly restrictive guidelines prohibit the use of most routine clinical MRI protocols in these patients. The authors’ goals were to assess the safety of spine MRI in patients with implanted DBS devices, first through phantom model testing and subsequently through validation in a DBS patient cohort.

METHODS

A phantom was used to assess DBS device heating during 1.5-T spine MRI. To establish a safe spine protocol, routinely used clinical sequences deemed unsafe (a rise in temperature > 2°C) were modified to decrease the rise in temperature. This safe phantom-based protocol was then used to prospectively run 67 spine MRI sequences in 9 DBS participants requiring clinical imaging. The primary outcome was acute adverse effects; secondary outcomes included long-term adverse clinical effects, acute findings on brain MRI, and device impedance stability.

RESULTS

The increases in temperature were highest when scanning the cervical spine and lowest when scanning the lumbar spine. A temperature rise < 2°C was achieved when 3D sequences were modified to 2D and when the number of slices was decreased by the minimum amount compared to routine spine MRI protocols (but there were still more slices than allowed by vendor guidelines). Following spine MRI, no acute or long-term adverse effects or acute findings on brain MR images were detected. Device impedances remained stable.

CONCLUSIONS

Patients with DBS devices may safely undergo spine MRI with a fewer number of slices compared to those used in routine clinical protocols. Safety data acquisition may allow protocols outside vendor guidelines with a maximized number of slices, reducing the need for radiologist supervision.

Clinical trial registration no.: NCT03753945 (ClinicalTrials.gov).