Search Results

You are looking at 1 - 10 of 23 items for

  • Author or Editor: Clark C. Chen x
Clear All Modify Search
Full access

Clark C. Chen, Paul Chapman, Joshua Petit and Jay Loeffler

Object

Photon energy deposition from gamma or photon sources follows the law of exponential decay. Consequently, energy is deposited over the entire path of the radiation beam, resulting in dose distribution before and after the target is reached. In contrast, the physical properties of protons are such that energy deposition occurs with no exit dose beyond the target volume. Therefore, relative to photons, proton beams represent a superior platform for the administration of radiosurgery.

Methods

In this review, the authors will discuss the fundamental principles underlying photon- and proton-based stereotactic radiosurgery (SRS). The clinical efficacy of proton-based SRS in the treatment of arteriovenous malformations, vestibular schwannomas, and pituitary adenomas is reviewed.

Results

Direct comparisons of clinical results attained using photon- and proton-based SRS are confounded by a bias toward reserving proton beams for the treatment of larger and more complex lesions. Despite this bias, the clinical outcomes for proton-based SRS have been excellent and have been at least comparable to those for photon-based treatments.

Conclusions

The physical properties of proton radiation offer superior conformality in dose distribution relative to photon irradiation. This advantage becomes more apparent as the lesion size increases and will probably be magnified with the development of intensity-modulated proton techniques.

Free access

Gene H. Barnett, Clark C. Chen, Robert E. Gross and Andrew E. Sloan

Full access

Leonardo Rangel-Castilla, Fangxiang Chen, Lawrence Choi, Justin C. Clark and Peter Nakaji

Object

An optimal entry point and trajectory for endoscopic colloid cyst (ECC) resection helps to protect important neurovascular structures. There is a large discrepancy in the entry point and trajectory in the neuroendoscopic literature.

Methods

Trajectory views from MRI or CT scans used for cranial image guidance in 39 patients who had undergone ECC resection between July 2004 and July 2010 were retrospectively evaluated. A target point of the colloid cyst was extended out to the scalp through a trajectory carefully observed in a 3D model to ensure that important anatomical structures were not violated. The relation of the entry point to the midline and coronal sutures was established. Entry point and trajectory were correlated with the ventricular size.

Results

The optimal entry point was situated 42.3 ± 11.7 mm away from the sagittal suture, ranging from 19.1 to 66.9 mm (median 41.4 mm) and 46.9 ± 5.7 mm anterior to the coronal suture, ranging from 36.4 to 60.5 mm (median 45.9 mm). The distance from the entry point to the target on the colloid cyst varied from 56.5 to 78.0 mm, with a mean value of 67.9 ± 4.8 mm (median 68.5 mm). Approximately 90% of the optimal entry points are located 40–60 mm in front of the coronal suture, whereas their perpendicular distance from the midline ranges from 19.1 to 66.9 mm. The location of the “ideal” entry points changes laterally from the midline as the ventricles change in size.

Conclusions

The results suggest that the optimal entry for ECC excision be located at 42.3 ± 11.7 mm perpendicular to the midline, and 46.9 ± 5.7 mm anterior to the coronal suture, but also that this point differs with the size of the ventricles. Intraoperative stereotactic navigation should be considered for all ECC procedures whenever it is available. The entry point should be estimated from the patient's own preoperative imaging studies if intraoperative neuronavigation is not available. An estimated entry point of 4 cm perpendicular to the midline and 4.5 cm anterior to the coronal suture is an acceptable alternative that can be used in patients with ventriculomegaly.

Free access

Robert C. Rennert, Kate T. Carroll, Mir Amaan Ali, Thomas Hamelin, Leon Chang, Brian P. Lemkuil and Clark C. Chen

OBJECTIVE

Stereotactic laser ablation (SLA) is typically performed in the setting of intraoperative MRI or in a staged manner in which probe insertion is performed in the operating room and thermal ablation takes place in an MRI suite.

METHODS

The authors describe their experience, in which SLA for glioblastoma (GBM) treatment was performed entirely within a conventional MRI suite using the SmartFrame stereotactic device.

RESULTS

All 10 patients with GBM (2 with isocitrate dehydrogenase 1 mutation [mIDH1] and 8 with wild-type IDH1 [wtIDH1]) were followed for > 6 months. One of these patients underwent 2 independent SLAs approximately 12 months apart. Biopsies were performed prior to SLA for all patients. There were no perioperative morbidities, wound infections, or unplanned 30-day readmissions. The average time for a 3-trajectory SLA (n = 3) was 436 ± 102 minutes; for a 2-trajectory SLA (n = 4) was 321 ± 85 minutes; and for a single-trajectory SLA (n = 4) was 254 ± 28 minutes. No tumor recurrence occurred within the blue isotherm line ablation zone, although 2 patients experienced recurrence immediately adjacent to the blue isotherm ablation line. Overall survival for the patient cohort averaged 356 days, with the 2 patients who had mIDH1 GBMs exhibiting the longest survival (811 and 654 days).

CONCLUSIONS

Multitrajectory SLA for treatment of GBM can be safely performed using the SmartFrame stereotactic device in a conventional MRI suite.

Restricted access

Samir Sarda, Wei Dong and Joshua J. Chern

Full access

Robert C. Rennert, Reid R. Hoshide, Jason W. Signorelli, Deirdre Amaro, Jayson A. Sack, Cameron W. Brennan and Clark C. Chen

The authors report an unusual case of a widely metastatic glioblastoma. DNA copy number microarray profile of the resected specimen revealed complex rearrangements found throughout chromosome 6, a phenomenon known as chromothripsis. Such chromothripsis pattern was not observed in 50 nonmetastatic glioblastoma specimens analyzed. Analysis of the 1000+ gliomas profiled by The Cancer Genome Atlas (TCGA) data set revealed one case of chromosome 6 chromothripsis resembling the case described here. This TCGA patient died within 6 months of undergoing tumor resection. Implications of these findings are reviewed in the context of the current literature.

Restricted access

Brandon A. McCutcheon, Brian R. Hirshman, Brandon C. Gabel, Michael W. Heffner, Logan P. Marcus, Tyler S. Cole, Clark C. Chen, David C. Chang and Bob S. Carter

OBJECTIVE

The subspecialization of neurosurgical practice is an ongoing trend in modern neurosurgery. However, it remains unclear whether the degree of surgeon specialization is associated with improved patient outcomes. The authors hypothesized that a trend toward increased neurosurgeon specialization was associated with improved patient morbidity and mortality rates.

METHODS

The Nationwide Inpatient Sample (NIS) was used (1998–2009). Patients were included in a spinal analysis cohort for instrumented spine surgery involving the cervical spine (International Classification of Diseases, Ninth Revision, Clinical Modification [ICD-9-CM] codes 81.31–81.33, 81.01–81.03, 84.61–84.62, and 84.66) or lumbar spine (codes 81.04–81.08, 81.34–81.38, 84.64–84.65, and 84.68). A cranial analysis cohort consisted of patients receiving a parenchymal excision or lobectomy operation (codes 01.53 and 01.59). Surgeon specialization was measured using unique surgeon identifiers in the NIS and defined as the proportion of a surgeon’s total practice dedicated to cranial or spinal cases.

RESULTS

A total of 46,029 and 231,875 patients were identified in the cranial and spinal analysis cohorts, respectively. On multivariate analysis in the cranial analysis cohort (after controlling for overall surgeon volume, patient demographic data/comorbidities, hospital characteristics, and admitting source), each percentage-point increase in a surgeon’s cranial specialization (that is, the proportion of cranial cases) was associated with a 0.0060 reduction in the log odds of patient mortality (95% CI 0.0034–0.0086) and a 0.0042 reduction in the log odds of morbidity (95% CI 0.0032–0.0052). This resulted in a 15% difference in the predicted probability of mortality for neurosurgeons at the 75th versus the 25th percentile of cranial specialization. In the spinal analysis cohort, each percentage-point increase in a surgeon’s spinal specialization was associated with a 0.0122 reduction in the log odds of mortality (95% CI 0.0074–0.0170) and a 0.0058 reduction in the log odds of morbidity (95% CI 0.0049–0.0067). This resulted in a 26.8% difference in the predicted probability of mortality for neurosurgeons at the 75th versus the 25th percentile of spinal specialization.

CONCLUSIONS

For both spinal and cranial surgery patient cohorts derived from the NIS database, increased surgeon specialization was significantly and independently associated with improved mortality and morbidity rates, even after controlling for overall case volume.

Full access

Brandon A. McCutcheon, David C. Chang, Logan Marcus, David D. Gonda, Abraham Noorbakhsh, Clark C. Chen, Mark A. Talamini and Bob S. Carter

OBJECT

This study was designed to assess the relationship between insurance status and likelihood of receiving a neurosurgical procedure following admission for either extraaxial intracranial hemorrhage or spinal vertebral fracture.

METHODS

A retrospective analysis of the Nationwide Inpatient Sample (NIS; 1998–2009) was performed. Cases of traumatic extraaxial intracranial hematoma and spinal vertebral fracture were identified using International Classification of Diseases, Ninth Revision (ICD-9) diagnosis codes. Within this cohort, those patients receiving a craniotomy or spinal fusion and/or decompression in the context of an admission for traumatic brain or spine injury, respectively, were identified using the appropriate ICD-9 procedure codes.

RESULTS

A total of 190,412 patients with extraaxial intracranial hematoma were identified between 1998 and 2009. Within this cohort, 37,434 patients (19.7%) received a craniotomy. A total of 477,110 patients with spinal vertebral fracture were identified. Of these, 37,302 (7.8%) received a spinal decompression and/or fusion. On multivariate analysis controlling for patient demographics, severity of injuries, comorbidities, hospital volume, and hospital characteristics, uninsured patients had a reduced likelihood of receiving a craniotomy (odds ratio [OR] 0.76, 95% confidence interval [CI] 0.71–0.82) and spinal fusion (OR 0.67, 95% CI 0.64–0.71) relative to insured patients. This statistically significant trend persisted when uninsured and insured patients were matched on the basis of mortality propensity score. Uninsured patients demonstrated an elevated risk-adjusted mortality rate relative to insured patients in cases of extraaxial intracranial hematoma. Among patients with spinal injury, mortality rates were similar between patients with and without insurance.

CONCLUSIONS

In this study, uninsured patients were consistently less likely to receive a craniotomy or spinal fusion for traumatic intracranial extraaxial hemorrhage and spinal vertebral fracture, respectively. This difference persisted after accounting for overall injury severity and patient access to high- or low-volume treatment centers, and potentially reflects a resource allocation bias against uninsured patients within the hospital setting. This information adds to the growing literature detailing the benefits of health reform initiatives seeking to expand access for the uninsured.

Full access

David D. Gonda, Alexander A. Khalessi, Brandon A. McCutcheon, Logan P. Marcus, Abraham Noorbakhsh, Clark C. Chen, David C. Chang and Bob S. Carter

Object

Using a database that enabled longitudinal follow-up, the authors assessed the long-term outcomes of unruptured cerebral aneurysms repaired by clipping or coiling.

Methods

An observational analysis of the California Office of Statewide Health Planning and Development (OSHPD) database, which follows patients longitudinally in time and through multiple hospitalizations, was performed for all patients initially treated for an unruptured cerebral aneurysm in the period from 1998 to 2005 and with follow-up data through 2009.

Results

Nine hundred forty-four cases (36.5%) were treated with endovascular coiling, 1565 cases (60.5%) were surgically clipped, and 76 cases were treated with both coiling and clipping. There was no significant difference in any demographic variable between the two treatment groups except for age (median: 55 years for the clipped group, 58 years for the coiled group, p < 0.001). Perioperative (30-day) mortality was 1.1% in patients with coiled aneurysms compared with 2.3% in those with clipped aneurysms (p = 0.048). The median follow-up was 7 years (range 4–12 years). At the last follow-up, 153 patients (16.2%) in the coiled group had died compared with 244 (15.6%) in the clipped group (p = 0.693). The adjusted hazard ratio for death at the long-term follow-up was 1.14 (95% CI 0.9–1.4, p = 0.282) for patients with endovascularly treated aneurysms. The incidence of intracranial hemorrhage was similar in the two treatment groups (5.9% clipped vs 4.8% coiled, p = 0.276). One hundred ninety-three patients (20.4%) with coiled aneurysms underwent additional hospitalizations for aneurysm repair procedures compared with only 136 patients (8.7%) with clipped aneurysms (p < 0.001). Cumulative hospital costs per patient for admissions involving aneurysm repair procedures were greater in the clipped group (median cost $98,260 vs $81,620, p < 0.001) through the follow-up.

Conclusions

For unruptured cerebral aneurysms, an observed perioperative survival advantage for endovascular coiling relative to that for surgical clipping was lost on long-term follow-up, according to data from an administrative database of patients who were not randomly allocated to treatment type. A cost advantage of endovascular treatment was maintained even though endovascularly treated patients were more likely to undergo subsequent hospitalizations for additional aneurysm repair procedures. Rates of aneurysm rupture following treatment were similar in the two groups.

Free access

David D. Gonda, Vincent J. Cheung, Karra A. Muller, Amit Goyal, Bob S. Carter and Clark C. Chen

Differentiating between low-grade gliomas (LGGs) of astrocytic and oligodendroglial origin remains a major challenge in neurooncology. Here the authors analyzed The Cancer Genome Atlas (TCGA) profiles of LGGs with the goal of identifying distinct molecular characteristics that would afford accurate and reliable discrimination of astrocytic and oligodendroglial tumors. They found that 1) oligodendrogliomas are more likely to exhibit the glioma-CpG island methylator phenotype (G-CIMP), relative to low-grade astrocytomas; 2) relative to oligodendrogliomas, low-grade astrocytomas exhibit a higher expression of genes related to mitosis, replication, and inflammation; and 3) low-grade astrocytic tumors harbor microRNA profiles similar to those previously described for glioblastoma tumors. Orthogonal intersection of these molecular characteristics with existing molecular markers, such as IDH1 mutation, TP53 mutation, and 1p19q status, should facilitate accurate and reliable pathological diagnosis of LGGs.