Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Christopher Filippi x
Clear All Modify Search
Restricted access

Keith A. Cauley, Trevor Andrews, Jay V. Gonyea and Christopher G. Filippi

Object

Cavernous malformations (CMs) can cause symptoms that appear out of proportion to the lesion size, leading one to hypothesize that they may have an effect on adjacent white matter that is not fully explained by local mass effect. The goal of this study was to investigate the diffusion tensor (DT) properties of CMs, the hemosiderin rim, and normal-appearing adjacent white matter.

Methods

Eighteen cavernous malformations were characterized using standard MR imaging sequences as well as 6-direction DT imaging with single-shot echo planar–gradient echo imaging at 3 tesla.

Results

Diffusion tensor imaging demonstrated that CMs have a characteristic signature on DT imaging, with low fractional anisotropy (FA) and high mean diffusivity centrally within the lesion. The hemosiderin rim had a high FA value relative to the central lesion or adjacent white matter. Tractography revealed that tracts neatly deviate around CMs. Tracts were typically seen to pass through the hemosiderin rim.

Conclusions

The hemosiderin rim of CMs was intimately associated with white matter tracts that were deviated by the central lesion. These findings are consistent with histopathological reports that the hemosiderin rim is composed of blood breakdown products deposited in viable white matter.