Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Christian Rainer Wirtz x
Clear All Modify Search
Free access

Jan Coburger, Jens Engelke, Angelika Scheuerle, Dietmar R. Thal, Michal Hlavac, Christian Rainer Wirtz and Ralph König

Object

High-grade gliomas (HGGs) and metastasis (MET) are the most common intracranial lesions in neurosurgical routine. Both of them show an invasive growth pattern extending into neural tissue beyond the margins of contrast enhancement on MRI. These “undetected” areas might be the origin of early tumor recurrence. The aim of the present study was to evaluate whether 5-aminolevulinic acid (5-ALA) fluorescence provides an additional benefit in detection of invasive tumor compared with intraoperative MRI (iMRI).

Methods

The authors prospectively enrolled 45 patients harboring contrast-enhancing lesions, in whom gross-total resection was intended. All patients had surgery in which iMRI and 5-ALA–guided resection were used following a specific protocol. First, a typical white light tumor resection was performed. Then, spatial location of residual fluorescence was marked. After that, an iMRI was performed and residual uptake of contrast was marked. Navigated biopsy samples were taken from all marked areas and from additional sites according to the surgeon's judgment. Cross tables and receiver operating characteristic curves were calculated, assessing performance of the imaging methods for tumor detection alone and for combined detection of infiltration zone and solid tumor (pathological tissue). Also, correlations of histopathological findings with imaging results were tested using Spearman rho.

Results

Thirty-four patients with HGGs and 11 with METs were enrolled. Three patients harboring a MET showed no 5-ALA enhancement and were excluded; 127 histopathological samples were harvested in the remaining patients. In HGG, sensitivity for tumor detection was significantly higher (p < 0.001) in 5-ALA (0.85) than in iMRI (0.41). Specificity was significantly lower (p < 0.001) in 5-ALA (0.43) than in iMRI (0.70). For detection of pathological tissue, 5-ALA significantly exceeded iMRI in specificity (0.80 vs 0.60) and sensitivity (0.91 vs 0.66) (p < 0.001). Imaging results of iMRI and 5-ALA did not correlate significantly; only 5-ALA showed a significant correlation with final histopathological diagnosis of the specimen and with typical histopathological features of HGGs. In METs, sensitivity and specificity for tumor detection were equal in 5-ALA and iMRI. Both techniques showed high values for sensitivity (0.75) and specificity (0.80). The odds ratio for detection of tumor tissue was 12 for both techniques. Concerning pathological tissue, no statistically significant difference was found either. Imaging results of iMRI and 5-ALA correlated significantly (p < 0.022), as with final histopathological diagnosis in METs.

Conclusions

In METs, due to the rate of nonenhancing lesions, the authors found no additional benefit of 5-ALA compared with iMRI. In HGG, imaging results of 5-ALA and iMRI are significantly different at the border zone; 5-ALA has a higher sensitivity and a lower specificity for tumor detection than Gd-DTPA–enhanced iMRI. For detection of infiltrating tumor at the border of the resection cavity, 5-ALA is superior to Gd-DTPA–enhanced iMRI concerning both sensitivity and specificity. Thus, use of 5-ALA in addition to iMRI might be beneficial to maximize extent of resection. Clinical synergistic effects will be evaluated in a prospective randomized trial.

Free access

Maria Teresa Pedro, Gregor Antoniadis, Angelika Scheuerle, Mirko Pham, Christian Rainer Wirtz and Ralph W. Koenig

The diagnostic workup and surgical therapy for peripheral nerve tumors and tumorlike lesions are challenging. Magnetic resonance imaging is the standard diagnostic tool in the preoperative workup. However, even with advanced pulse sequences such as diffusion tensor imaging for MR neurography, the ability to differentiate tumor entities based on histological features remains limited. In particular, rare tumor entities different from schwannomas and neurofibromas are difficult to anticipate before surgical exploration and histological confirmation. High-resolution ultrasound (HRU) has become another important tool in the preoperative evaluation of peripheral nerves. Ongoing software and technical developments with transducers of up to 17–18 MHz enable high spatial resolution with tissue-differentiating properties. Unfortunately, high-frequency ultrasound provides low tissue penetration. The authors developed a setting in which intraoperative HRU was used and in which the direct sterile contact between the ultrasound transducer and the surgically exposed nerve pathology was enabled to increase structural resolution and contrast. In a case-guided fashion, the authors report the sonographic characteristics of rare tumor entities shown by intraoperative HRU and contrast-enhanced ultrasound.

Full access

Jan Coburger, Ralph König, Klaus Seitz, Ute Bäzner, Christian Rainer Wirtz and Michal Hlavac

Object

Intraoperative MRI (iMRI) provides updated information for neuronavigational purposes and assessments on the status of resection during transsphenoidal surgery (TSS). The high-field technique additionally provides information about vascular structures at risk and precise information about extrasellar residual tumor, making it readily available during the procedure. The imaging, however, extends the duration of surgery. To evaluate the benefit of this technique, the authors conducted a retrospective study to compare postoperative outcome and residual tumor in patients who underwent conventional microsurgical TSS with and without iMRI.

Methods

A total of 143 patients were assessed. A cohort of 67 patients who had undergone surgery before introduction of iMRI was compared with 76 patients who had undergone surgery since iMRI became routine in TSS at the authors' institution. Residual tumor, complications, hormone dependency, biochemical remission rates, and improvement of vision were assessed at 6-month follow-up. A volumetric evaluation of residual tumor was performed in cases of parasellar tumor extension.

Results

The majority of patients in both groups suffered from nonfunctioning pituitary adenomas. At the 6-month follow-up assessment, vision improved in 31% of patients who underwent iMRI-assisted surgery versus 23% in the conventional group. One instance of postoperative intrasellar bleeding was found in the conventional group. No major complications were found in the iMRI group. Minor complications were seen in 9% of patients in the iMRI group and in 5% of those in the conventional group. No differences between groups were found for hormone dependency and biochemical remission rates. Time of surgery was significantly lower in the conventional treatment group. Overall a residual tumor was found after surgery in 35% of the iMRI group, and 41% of the conventional surgery group harbored a residual tumor. Total resection was achieved as intended significantly more often in the iMRI group (91%) than in the conventional group (73%) (p < 0.034). Patients with a planned subtotal resection showed higher mean volumes of residual tumor in the conventional group. There was a significantly lower incidence of intrasellar tumor remnants in the iMRI group than in the conventional group. Progression-free survival after 30 months was higher according to Kaplan-Meier analysis with the use of iMRI, but a statistically significant difference could not be shown.

Conclusions

The use of high-field iMRI leads to a significantly higher rate of complete resection. In parasellar tumors a lower residual volume and a significantly lower rate of intrasellar tumor remnants were shown with the technique. So far, long-term follow-up is limited for iMRI. However, after 2 years Kaplan-Meier analyses show a distinctly higher progression-free survival in the iMRI group. No significant benefit of iMRI was found for biochemical remission rates and improvement of vision. Even though the surgical time was longer with the adjunct use of iMRI, it did not increase the complication rate significantly. The authors therefore recommend routine use of high-field iMRI for pituitary surgery, if this technique is available at the particular center.

Full access

Christian Rainer Wirtz, Thorsten Steiner, Alfred Aschoff, Stefan Schwab, Holger Schnippering, Hans Herbert Steiner, Werner Hacke and Stefan Kunze

Surgical decompression to alleviate raised intracranial pressure has been reported repeatedly in the past decades in small series of patients. Only recently have there been indications from larger trials that surgical decompression may be beneficial in treating space-occupying hemispheric infarction. However, surgical requirements for the procedure to be effective have not yet been defined.

Based on theoretical criteria, the authors operated on 43 patients with medically uncontrollable hemispheric infarctions. The craniectomies were planned to be as large as possible and performed in combination with a subtemporal decompression. Postoperative computerized tomography scans were evaluated for these criteria.

The mean survival rate for the group of 43 patients was 72.1% and no surviving patient ended up in a vegetative state. The mean area of craniectomy was found to be 84.3 ± 16.5 cm2 and the mean distance of the inferior craniectomy margin to the middle fossa was 1.8 ± 1.3 cm. Comparison of survivors and nonsurvivors failed to show a significant difference in the size of craniectomy or the distance to the floor of the middle fossa.

Compared with the reported 80% fatality rate for medically treated stroke patients, in this subgroup the outcome (72.1% survival rate) is remarkably good. The authors conclude that decompressive craniectomy is an effective treatment, able to reduce mortality, and to improve neurological outcome in patients with space-occupying cerebral infarction if the size of craniectomy is large enough. Nevertheless, there is a need for further investigation to identify patients who will benefit from surgery and predictors to optimize the timing of surgical intervention.

Restricted access

Gregor Durner, Yigit Özpeynirci, Bernd Schmitz, Christian Rainer Wirtz, Ralph König and Andrej Pala

Recently, treatment of cerebral aneurysms with the Woven EndoBridge (WEB) device has become an established endovascular strategy. However, over time, neurosurgeons and neuroradiologists will be confronted with the challenge of how to treat aneurysm recanalization. The authors report the case of a 49-year-old woman who underwent re-treatment with clipping after the recanalization of a 4 × 3–mm anterior communicating artery aneurysm that had previously been treated using a 4 × 3 WEB device. In contrast to the authors’ prior experiences with clipping of previously coiled aneurysms, the WEB device was found to have a responsive softness during clip placement, and the aneurysm was more maneuverable. Moreover, evaluation with indocyanine green angiography was easy to perform because of the transparent mesh of the WEB device. No profound scarring or WEB protrusion was noted during surgery, making the procedure easier and less dangerous with regard to additional complications. The authors suggest that re-treatment via clipping should be considered in select cases of aneurysm recurrence after treatment with an intraaneurysmal flow diverter.

Restricted access

Andrej Pala, Fadi Awad, Michael Braun, Michal Hlavac, Arthur Wunderlich, Bernd Schmitz, Christian Rainer Wirtz and Jan Coburger

OBJECTIVE

The gold standard for evaluation of ventriculoperitoneal (VP) shunt position, dislocation, or disconnection is conventional radiography. Yet, assessment with this modality can be challenging because of low image quality and can result in repetitive radiation exposure with high fluctuation in the radiation dose. Recently, CT-based radiation doses have been significantly reduced by using low-dose protocols. Thus, whole-body low-dose CT (LDCT) has become applicable for routine use in VP shunt evaluation. The authors here compared image quality and approximate radiation dose between radiography and LDCT in patients with implanted VP shunt systems.

METHODS

Ventriculoperitoneal shunt systems have been investigated with LDCT scanning at the authors’ department since 2015. A consecutive series of 57 patients (70 investigations) treated between 2015 and 2016 was retrospectively assessed. A historical patient cohort that had been evaluated with radiography was compared with the LDCT patients in terms of radiation dose and image quality. Three independent observers evaluated projection of the valve pressure level and correct intraperitoneal position, as well as complete shunt projection, using a Likert-type scale of 1–5, where 1 indicated “not assessable” and 5 meant “assessable with high accuracy.” Descriptive statistics and the Mann-Whitney U-test were used for analysis.

RESULTS

Twenty-seven radiographs (38.6%) and 43 LDCT scans (61.4%) were analyzed. The median dose-length product (DLP) of the LDCT scans was 100 mGy·cm (range 59.9–183 mGy·cm). The median total dose-area product (DAP) of the radiographic images was 3177 mGy·cm2 (range 641–13,833 mGy·cm2). The estimated effective dose (EED) was significantly lower with the LDCT scan (p < 0.001). The median EED was 4.93 and 1.90 mSv for radiographs and LDCT, respectively. Significantly better identification of the abdominal position of the distal shunt catheter was achieved with LDCT (p < 0.001). Simultaneously, significantly improved visualization of the entire shunt system was realized with this technique (p < 0.001). On the contrary, identification of the valve settings was significantly worse with LDCT (p < 0.001).

CONCLUSIONS

Whole-body LDCT scanning allows good visualization of the distal catheter after VP shunt placement. Despite the fact that only a rough estimation of effective doses is possible in a direct comparison of LDCT and radiography, the data showed that shunt assessment via LDCT does not lead to greater radiation exposure. Thus, especially in difficult anatomical conditions, as in patients who have undergone multiple intraabdominal surgeries, have a high BMI, or are immobile, the use of LDCT shunt evaluation has high clinical value. Further data are needed to determine the value of LDCT for the evaluation of complications or radiation dose in pediatric patients.

Restricted access

Andrej Paľa, Julia Schick, Moritz Klein, Benjamin Mayer, Bernd Schmitz, Christian Rainer Wirtz, Ralph König and Thomas Kapapa

OBJECTIVE

Delayed cerebral ischemia (DCI) is a major factor contributing to the inferior outcome of patients with spontaneous subarachnoid hemorrhage (SAH). Nimodipine and induced hypertension using vasopressors are an integral part of standard therapy. Consequences of the opposite effect of nimodipine and vasopressors on blood pressure on patient outcome remain unclear. The authors report the detailed general characteristics and influence of nimodipine and vasopressors on outcome in patients with SAH.

METHODS

The authors performed a 2-center, retrospective, clinical database analysis of 732 SAH patients treated between 2008 and 2016. Demographic and clinical data such as age, sex, World Federation of Neurosurgical Societies (WFNS) grade, BMI, Fisher grade, history of arterial hypertension and smoking, aneurysm location, C-reactive protein (CRP) level, and detailed dosage of vasopressors and nimodipine during the treatment period were evaluated. Clinical outcome was analyzed using the modified Rankin Scale (mRS) 6 months after treatment. Univariate and multivariate regression analyses were performed. Additionally, mean arterial pressure (MAP), age, nimodipine, and vasopressor dose cutoff were evaluated with regard to outcome. The level of significance was set at ≤ 0.05.

RESULTS

Follow-up was assessed for 397 patients, 260 (65.5%) of whom achieved a good outcome (defined as an mRS score of 0–3). Univariate and multivariate analyses confirmed that nimodipine (p = 0.049), age (p = 0.049), and CRP level (p = 0.002) are independent predictors of good outcome. WFNS grade, Fisher score, hypertension, initial hydrocephalus, and total vasopressor dose showed significant influence on outcome in univariate analysis, and patient sex, smoking status, BMI, and MAP showed no significant association with outcome. A subgroup analysis of patients with milder initial SAH (WFNS grades I–III) revealed that initial hydrocephalus (p = 0.003) and CRP levels (p = 0.001) had significant influence on further outcome. When evaluating only patients with WFNS grade IV or V, age, CRP level (p = 0.011), vasopressor dose (p = 0.030), and nimodipine dose (p = 0.049) were independent predictors of patient outcome. Patients with an MAP < 93 mm Hg, a nimodipine cutoff dose of 241.8 mg, and cutoff total vasopressor dose of 523 mg had better outcomes.

CONCLUSIONS

According to the authors’ results, higher doses of vasopressors can safely provide a situation in which the maximum dose of nimodipine could be administered. Cutoff values of the total vasopressor dose were more than 3 times higher in patients with severe SAH (WFNS grade IV or V), while the nimodipine cutoff remained similar in patients with mild and severe SAH. Hence, it seems encouraging that a maximum nimodipine dosage can be achieved despite the need for a higher vasopressor dose in patients with SAH.

Restricted access

Oral Presentations

2010 AANS Annual Meeting Philadelphia, Pennsylvania May 1–5, 2010