Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Christian Iorio-Morin x
  • Refine by Access: all x
Clear All Modify Search
Free access

Christian Iorio-Morin and Mathieu Levesque

Free access

Christian Iorio-Morin and Mathieu Levesque

Free access

Christian Iorio-Morin, Laurence Masson-Côté, Youssef Ezahr, Jocelyn Blanchard, Annie Ebacher, and David Mathieu

Object

Optimal case management after surgical removal of brain metastasis remains controversial. Although postoperative whole-brain radiation therapy (WBRT) has been shown to prevent local recurrence and decrease deaths, this modality can substantially decrease neurocognitive function and quality of life. Stereotactic radiosurgery (SRS) can theoretically achieve the same level of local control with fewer side effects, although studies conclusively demonstrating such outcomes are lacking. To assess the effectiveness and safety profile of tumor bed SRS after resection of brain metastasis, the authors performed a retrospective analysis of 110 patients who had received such treatment at the Centre Hospitalier Universitaire de Sherbrooke. They designed the study to identify risk factors for local recurrence and placed special emphasis on factors that could potentially be addressed.

Methods

Patients who had received treatment from 2004 through 2013 were included if they had undergone surgical removal of 1 or more brain metastases and if the tumor bed was treated by SRS regardless of the extent of resection or prior WBRT. All cases were retrospectively analyzed for patient and tumor-specific factors, treatment protocol, adverse outcomes, cavity outcomes, and survival for as long as follow-up was available. Univariate and multivariate Cox regression analyses were performed to identify risk factors for local recurrence and predictors of increased survival times.

Results

Median patient age at first SRS treatment was 58 years (range 37–84 years). The most frequently diagnosed primary tumor was non–small cell lung cancer. The rate of gross-total resection was 81%. The median Karnofsky Performance Scale score was 90%. Tumor bed SRS was performed at a median of 3 weeks after surgery. Median follow-up and survival times were 10 and 11 months, respectively. Actuarial local control of the cavity at 12 months was 73%; median time to recurrence was 6 months. According to multivariate analysis, risk factors for recurrence were a longer surgery-to-SRS delay (HR 1.625, p = 0.003) and a lower maximum radiation dose delivered to the cavity (HR 0.817, p = 0.006). Factors not associated with increased recurrence were subtotal or piecemeal resections, prior WBRT, histology of the primary tumor, and larger cavity volume. No factors predictive of survival were identified. Symptomatic radiation-induced enhancement occurred in 6% of patients and leptomeningeal dissemination in 11%. Pathologically confirmed radiation-induced necrosis occurred in 1 (0.9%) patient.

Conclusions

Adjuvant tumor bed SRS after the resection of brain metastasis is a valuable alternative to adjuvant WBRT. Risk factors for local recurrence are lower maximum radiation dose and a surgery-to-SRS delay longer than 3 weeks. Outcomes were not worse for patients who had undergone prior WBRT and subtotal or piecemeal resections. Pending the results of prospective randomized controlled trials, the authors' study supports the safety and efficacy of adjuvant SRS after resection of brain metastasis. SRS should be performed as early as possible, ideally within 3 weeks of the surgery.

Free access

Can Sarica, Anton Fomenko, Christian Iorio-Morin, Ajmal Zemmar, Kazuaki Yamamoto, Artur Vetkas, Andres M. Lozano, and Alfonso Fasano

Restricted access

Diogo Cordeiro, Zhiyuan Xu, Chelsea E. Li, Christian Iorio-Morin, David Mathieu, Nathaniel D. Sisterson, Hideyuki Kano, Luca Attuati, Piero Picozzi, Kimball A. Sheehan, Cheng-chia Lee, Roman Liscak, Jana Jezkova, L. Dade Lunsford, and Jason Sheehan

OBJECTIVE

Nelson’s syndrome is a rare and challenging neuroendocrine disorder, and it is associated with elevated adrenocorticotrophic hormone (ACTH) level, skin hyperpigmentation, and pituitary adenoma growth. Management options including resection and medical therapy are traditional approaches. Ionizing radiation in the form of Gamma Knife radiosurgery (GKRS) is also being utilized to treat Nelson’s syndrome. In the current study the authors sought to better define the therapeutic role of stereotactic radiosurgery (SRS) in Nelson’s syndrome.

METHODS

Study patients with Nelson’s syndrome were treated with single-fraction GKRS (median margin dose of 25 Gy) at 6 different centers as part of an International Radiosurgery Research Foundation (IRRF) investigation. Data including neurological function, endocrine response, and radiological tumor response were collected and sent to the study-coordinating center for review. Fifty-one patients with median endocrine and radiological follow-ups of 91 and 80.5 months from GKRS, respectively, were analyzed for endocrine remission, tumor control, and neurological outcome. Statistical methods were used to identify prognostic factors for these endpoints.

RESULTS

At last follow-up, radiological tumor control was achieved in 92.15% of patients. Endocrine remission off medical management and reduction in pre-SRS ACTH level were achieved in 29.4% and 62.7% of patients, respectively. Improved remission rates were associated with a shorter time interval between resection and GKRS (p = 0.039). Hypopituitarism was seen in 21.6% and new visual deficits were demonstrated in 15.7% of patients.

CONCLUSIONS

GKRS affords a high rate of pituitary adenoma control and improvement in ACTH level for the majority of Nelson’s syndrome patients. Hypopituitarism is the most common adverse effect from GKRS in Nelson’s syndrome patients and warrants longitudinal follow-up for detection and endocrine replacement.

Restricted access

Anne-Marie Langlois, Christian Iorio-Morin, Andrew Faramand, Ajay Niranjan, L. Dade Lunsford, Nasser Mohammed, Jason P. Sheehan, Roman Liščák, Dušan Urgošík, Douglas Kondziolka, Cheng-chia Lee, Huai-che Yang, Ahmet F. Atik, and David Mathieu

OBJECTIVE

Cranial nerve (CN) schwannomas are intracranial tumors that are commonly managed by stereotactic radiosurgery (SRS). There is a large body of literature supporting the use of SRS for vestibular schwannomas. Schwannomas of the oculomotor nerves (CNs III, IV, and VI) are rare skull base tumors, occurring close to the brainstem and often involving the cavernous sinus. Resection can cause significant morbidity, including loss of nerve function. As for other schwannomas, SRS can be used to manage these tumors, but only a handful of cases have been published so far, often among reports of other uncommon schwannoma locations.

METHODS

The goal of this study was to collect retrospective multicenter data on tumor control, clinical evolution, and morbidity after SRS. This study was performed through the International Radiosurgery Research Foundation. Patients managed with single-session SRS for an oculomotor cranial nerve schwannoma (CN III, IV, or VI) were included. The diagnosis was based on diplopia or ptosis as the main presenting symptom and anatomical location on the trajectory of the presumed cranial nerve of origin, or prior resection confirming diagnosis. Demographic, SRS dose planning, clinical, and imaging data were collected from chart review of the treated patients. Chi-square and Kaplan-Meier analyses were performed.

RESULTS

Seven institutions submitted data for a total of 25 patients. The median follow-up time was 41 months. The median age at the time of treatment was 52 years. There were 11 CN III schwannomas, 11 CN IV schwannomas, and 3 CN VI schwannomas. The median target volume was 0.74 cm3, and the median marginal dose delivered was 12.5 Gy. After SRS, only 2 patients (including the only patient with neurofibromatosis type 2) had continued tumor growth. Crude local control was 92% (23/25), and the 10-year actuarial control was 86%. Diplopia improved in the majority of patients (11/21), and only 3 had worsening following SRS, 2 of whom also had worsened ptosis, both in the context of tumor progression.

CONCLUSIONS

SRS for schwannomas of the oculomotor, trochlear, and abducens nerves is effective and provides tumor control rates similar to those for other cranial nerve schwannomas. SRS allows improvement of diplopia in the majority of patients. SRS should therefore be considered as a first-line treatment option for oculomotor nerve schwannomas.

Restricted access

Ayoub Dakson, Michelle Kameda-Smith, Michael D. Staudt, Pascal Lavergne, Serge Makarenko, Matthew E. Eagles, Huphy Ghayur, Ru Chen Guo, Alwalaa Althagafi, Jonathan Chainey, Charles J. Touchette, Cameron Elliott, Christian Iorio-Morin, Michael K. Tso, Ryan Greene, Laurence Bargone, and Sean D. Christie

OBJECTIVE

External ventricular drainage (EVD) catheters are associated with complications such as EVD catheter infection (ECI), intracranial hemorrhage (ICH), and suboptimal placement. The aim of this study was to investigate the rates of EVD catheter complications and their associated risk factor profiles in order to optimize the safety and accuracy of catheter insertion.

METHODS

A total of 348 patients with urgently placed EVD catheters were included as a part of a prospective multicenter observational cohort. Strict definitions were applied for each complication category.

RESULTS

The rates of misplacement, ECI/ventriculitis, and ICH were 38.6%, 12.2%, and 9.2%, respectively. Catheter misplacement was associated with midline shift (p = 0.002), operator experience (p = 0.031), and intracranial length (p < 0.001). Although mostly asymptomatic, ICH occurred more often in patients receiving prophylactic low-molecular-weight heparin (LMWH) (p = 0.002) and those who required catheter replacement (p = 0.026). Infectious complications (ECI/ventriculitis and suspected ECI) occurred more commonly in patients whose catheters were inserted at the bedside (p = 0.004) and those with smaller incisions (≤ 1 cm) (p < 0.001). ECI/ventriculitis was not associated with preinsertion antibiotic prophylaxis (p = 0.421), catheter replacement (p = 0.118), and catheter tunneling length (p = 0.782).

CONCLUSIONS

EVD-associated complications are common. These results suggest that the operating room setting can help reduce the risk of infection, but not the use of preoperative antibiotic prophylaxis. Although EVD-related ICH was associated with LMWH prophylaxis for deep vein thrombosis, there were no significant clinical manifestations in the majority of patients. Catheter misplacement was associated with operator level of training and midline shift. Information from this multicenter prospective cohort can be utilized to increase the safety profile of this common neurosurgical procedure.

Free access

Rebecca M. Burke, Ching-Jen Chen, Dale Ding, Thomas J. Buell, Jennifer D. Sokolowski, Cheng-Chia Lee, Hideyuki Kano, Kathryn N. Kearns, Shih-Wei Tzeng, Huai-che Yang, Paul P. Huang, Douglas Kondziolka, Natasha Ironside, David Mathieu, Christian Iorio-Morin, Inga S. Grills, Caleb Feliciano, Gene H. Barnett, Robert M. Starke, L. Dade Lunsford, and Jason P. Sheehan

OBJECTIVE

Stereotactic radiosurgery (SRS) is a treatment option for pediatric brain arteriovenous malformations (AVMs), and early obliteration could encourage SRS utilization for a subset of particularly radiosensitive lesions. The objective of this study was to determine predictors of early obliteration after SRS for pediatric AVMs.

METHODS

The authors performed a retrospective review of the International Radiosurgery Research Foundation AVM database. Obliterated pediatric AVMs were sorted into early (obliteration ≤ 24 months after SRS) and late (obliteration > 24 months after SRS) responders. Predictors of early obliteration were identified, and the outcomes of each group were compared.

RESULTS

The overall study cohort was composed of 345 pediatric patients with obliterated AVMs. The early and late obliteration cohorts were made up of 95 (28%) and 250 (72%) patients, respectively. Independent predictors of early obliteration were female sex, a single SRS treatment, a higher margin dose, a higher isodose line, a deep AVM location, and a smaller AVM volume. The crude rate of post-SRS hemorrhage was 50% lower in the early (3.2%) than in the late (6.4%) obliteration cohorts, but this difference was not statistically significant (p = 0.248). The other outcomes of the early versus late obliteration cohorts were similar, with respect to symptomatic radiation-induced changes (RICs), cyst formation, and tumor formation.

CONCLUSIONS

Approximately one-quarter of pediatric AVMs that become obliterated after SRS will achieve this radiological endpoint within 24 months of initial SRS. The authors identified multiple factors associated with early obliteration, which may aid in prognostication and management. The overall risks of delayed hemorrhage, RICs, cyst formation, and tumor formation were not statistically different in patients with early versus late obliteration.

Free access

Ching-Jen Chen, Cheng-Chia Lee, Hideyuki Kano, Kathryn N. Kearns, Dale Ding, Shih-Wei Tzeng, Ahmet Atik, Krishna Joshi, Gene H. Barnett, Paul P. Huang, Douglas Kondziolka, David Mathieu, Christian Iorio-Morin, Inga S. Grills, Thomas J. Quinn, Zaid A. Siddiqui, Kim Marvin, Caleb Feliciano, Andrew Faramand, L. Dade Lunsford, and Jason P. Sheehan

OBJECTIVE

Contrary to the better described obliteration- and hemorrhage-related data after stereotactic radiosurgery (SRS) of brain arteriovenous malformations (AVMs) in pediatric patients, estimates of the rarer complications, including cyst and tumor formation, are limited in the literature. The aim of the present study was to assess the long-term outcomes and risks of SRS for AVMs in pediatric patients (age < 18 years).

METHODS

The authors retrospectively analyzed the International Radiosurgery Research Foundation pediatric AVM database for the years 1987 to 2018. AVM obliteration, post-SRS hemorrhage, cyst formation, and tumor formation were assessed. Cumulative probabilities, adjusted for the competing risk of death, were calculated.

RESULTS

The study cohort comprised 539 pediatric AVM patients (mean follow-up 85.8 months). AVM obliteration was observed in 64.3% of patients, with cumulative probabilities of 63.6% (95% CI 58.8%–68.0%), 77.1% (95% CI 72.1%–81.3%), and 88.1% (95% CI 82.5%–92.0%) over 5, 10, and 15 years, respectively. Post-SRS hemorrhage was observed in 8.4% of patients, with cumulative probabilities of 4.9% (95% CI 3.1%–7.2%), 9.7% (95% CI 6.4%–13.7%), and 14.5% (95% CI 9.5%–20.5%) over 5, 10, and 15 years, respectively. Cyst formation was observed in 2.1% of patients, with cumulative probabilities of 5.5% (95% CI 2.3%–10.7%) and 6.9% (95% CI 3.1%–12.9%) over 10 and 15 years, respectively. Meningiomas were observed in 2 patients (0.4%) at 10 and 12 years after SRS, with a cumulative probability of 3.1% (95% CI 0.6%–9.7%) over 15 years.

CONCLUSIONS

AVM obliteration can be expected after SRS in the majority of the pediatric population, with a relatively low risk of hemorrhage during the latency period. Cyst and benign tumor formation after SRS can be observed in 7% and 3% of patients over 15 years, respectively. Longitudinal surveillance for delayed neoplasia is prudent despite its low incidence.

Restricted access

Christian Iorio-Morin, Charles G. Fisher, Edward Abraham, Andrew Nataraj, Najmedden Attabib, Jerome Paquet, Thomas Guy Hogan, Christopher S. Bailey, Henry Ahn, Michael Johnson, Eden A. Richardson, Neil Manson, Ken Thomas, Y. Raja Rampersaud, Hamilton Hall, and Nicolas Dea

OBJECTIVE

Lumbar discectomy (LD) is frequently performed to alleviate radicular pain resulting from disc herniation. While this goal is achieved in most patients, improvement in low-back pain (LBP) has been reported inconsistently. The goal of this study was to characterize how LBP evolves following discectomy.

METHODS

The authors performed a retrospective analysis of prospectively collected patient data from the Canadian Spine Outcomes and Research Network (CSORN) registry. Patients who underwent surgery for lumbar disc herniation were eligible for inclusion. The primary outcome was a clinically significant reduction in the back pain numerical rating scale (BPNRS) assessed at 12 months. Binary logistic regression was used to model the relationship between the primary outcome and potential predictors.

RESULTS

There were 557 patients included in the analysis. The chief complaint was radiculopathy in 85%; 55% of patients underwent a minimally invasive procedure. BPNRS improved at 3 months by 48% and this improvement was sustained at all follow-ups. LBP and leg pain improvement were correlated. Clinically significant improvement in BPNRS at 12 months was reported by 64% of patients. Six factors predicted a lack of LBP improvement: female sex, low education level, marriage, not working, low expectations with regard to LBP improvement, and a low BPNRS preoperatively.

CONCLUSIONS

Clinically significant improvement in LBP is observed in the majority of patients after LD. These data should be used to better counsel patients and provide accurate expectations about back pain improvement.