Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Christian Fisahn x
Clear All Modify Search
Restricted access

Faheem A. Sandhu and Richard G. Fessler

Free access

Dennis Grasmücke, Amrei Zieriacks, Oliver Jansen, Christian Fisahn, Matthias Sczesny-Kaiser, Martin Wessling, Renate C. Meindl, Thomas A. Schildhauer and Mirko Aach

Objective

Age and lesion level are believed to represent outcome predictors in rehabilitation of patients with chronic spinal cord injury (SCI). The Hybrid Assistive Limb (HAL) exoskeleton enables patients to perform a voluntary controlled gait pattern via an electromyography-triggered neuromuscular feedback system, and has been introduced as a temporary gait training tool in patients with SCI. The aim of this prospective pre- and postintervention study was to examine functional outcomes as a function of age and lesion level in patients with chronic incomplete SCI (iSCI) or chronic complete SCI (cSCI) with zones of partial preservation (ZPP) by using the HAL as a temporary training tool.

Methods

Fifty-five participants with chronic iSCI or cSCI (mean time since injury 6.85 ± 5.12 years) were classified according to the American Spinal Injury Association (ASIA) Impairment Scale (AIS) and divided by age (< 50 or ≥ 50 years), independent of lesion level, and also into 4 homogeneous groups according to lesion level. The subgroups were as follows: Subgroup 1, tetraplegic iSCI (n = 13) (C2–8, AIS C [n = 8] and AIS D [n = 5]); Subgroup 2, paraplegic iSCI with spastic motor behavior (n = 15) (T2–12, AIS C [n = 8] and AIS D [n = 7]); Subgroup 3, paraplegic cSCI with complete motor paraplegia and absence of spastic motor behavior (n = 18) (T11–L4 [AIS A], and ZPP from L-3 to S-1); and Subgroup 4, paraplegic iSCI with absence of spastic motor behavior (n = 9) (T12–L3, AIS C [n = 8] and AIS D [n = 1]). The training paradigm consisted of 12 weeks of HAL-assisted treadmill training (5 times/week). Baseline status was documented prior to intervention by using the AIS grade, Walking Index for SCI II (WISCI II) score, the 10-meter walk test (10MWT), and the 6-minute walk test (6MinWT). Training effects were assessed after 6 and 12 weeks of therapy, without HAL assistance.

Results

Overall, a time reduction of 47% in the 10MWT, self-selected speed (10MWTsss) (< 50 years = 56% vs ≥ 50 years = 37%) and an increase of 50% in the 6MinWT were documented. The WISCI II scores showed a mean gain of 1.69 levels. At the end of the study, 24 of 55 patients (43.6%) were less dependent on walking aids. Age had a nonsignificant negative influence on the 10MWTsss. Despite a few nonsignificant subgroup differences, participants improved across all tests. Namely, patients with iSCI who had spastic motor behavior improved to a nonsignificant, lesser extent in the 6MinWT.

Conclusions

The HAL-assisted treadmill training leads to functional improvements in chronic iSCI or cSCI, both in and out of the exoskeleton. An improvement of approximately 50% in the 10MWTsss and in gait endurance (6MinWT) can be expected from such training. The influences of SCI lesion level and age on functional outcome were nonsignificant in the present study. Older age (≥ 50 years) may be associated with smaller improvements in the 10MWTsss. An iSCI in paraplegic patients with spastic motor behavior may be a nonsignificant negative predictor in gait endurance improvements.

Clinical trial registration no.: DRKS00010250 (https://drks-neu.uniklinik-freiburg.de/drks_web/setLocale_DE.do)

Full access

Marc Moisi, Christian Fisahn, Lara Tkachenko, Shiveindra Jeyamohan, Stephen Reintjes, Peter Grunert, Daniel C. Norvell, R. Shane Tubbs, Jeni Page, David W. Newell, Peter Nora, Rod J. Oskouian and Jens Chapman

OBJECTIVE

Posterior atlantoaxial stabilization and fusion using C-1 lateral mass screw fixation has become commonly used in the treatment of instability and for reconstructive indications since its introduction by Goel and Laheri in 1994 and modification by Harms in 2001. Placement of such lateral mass screws can be challenging because of the proximity to the spinal cord, vertebral artery, an extensive venous plexus, and the C-2 nerve root, which overlies the designated starting point on the posterior center of the lateral mass. An alternative posterior access point starting on the posterior arch of C-1 could provide a C-2 nerve root–sparing starting point for screw placement, with the potential benefit of greater directional control and simpler trajectory. The authors present a cadaveric study comparing an alternative strategy (i.e., a C-1 screw with a posterior arch starting point) to the conventional strategy (i.e., using the lower lateral mass entry site), specifically assessing the safety of screw placement to preserve the C-2 nerve root.

METHODS

Five US-trained spine fellows instrumented 17 fresh human cadaveric heads using the Goel/Harms C-1 lateral mass (GHLM) technique on the left and the posterior arch lateral mass (PALM) technique on the right, under fluoroscopic guidance. After screw placement, a CT scan was obtained on each specimen to assess for radiographic screw placement accuracy. Four faculty spine surgeons, blinded to the surgeon who instrumented the cadaver, independently graded the quality of screw placement using a modified Upendra classification.

RESULTS

Of the 17 specimens, the C-2 nerve root was anatomically impinged in 13 (76.5%) of the specimens. The GHLM technique was graded Type 1 or 2, which is considered “acceptable,” in 12 specimens (70.6%), and graded Type 3 or 4 (“unacceptable”) in 5 specimens (29.4%). In contrast, the PALM technique had 17 (100%) of 17 graded Type 1 or 2 (p = 0.015). There were no vertebral artery injuries found in either technique. All screw violations occurred in the medial direction.

CONCLUSIONS

The PALM technique showed statistically fewer medial penetrations than the GHLM technique in this study. The reason for this is not clear, but may stem from a more angulated ”up-and-in” screw direction necessary with a lower starting point.