Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Christiaan H. B. van Niftrik x
  • Refine by Access: all x
Clear All Modify Search
Free access

Utility of deep neural networks in predicting gross-total resection after transsphenoidal surgery for pituitary adenoma: a pilot study

Victor E. Staartjes, Carlo Serra, Giovanni Muscas, Nicolai Maldaner, Kevin Akeret, Christiaan H. B. van Niftrik, Jorn Fierstra, David Holzmann, and Luca Regli

OBJECTIVE

Gross-total resection (GTR) is often the primary surgical goal in transsphenoidal surgery for pituitary adenoma. Existing classifications are effective at predicting GTR but are often hampered by limited discriminatory ability in moderate cases and by poor interrater agreement. Deep learning, a subset of machine learning, has recently established itself as highly effective in forecasting medical outcomes. In this pilot study, the authors aimed to evaluate the utility of using deep learning to predict GTR after transsphenoidal surgery for pituitary adenoma.

METHODS

Data from a prospective registry were used. The authors trained a deep neural network to predict GTR from 16 preoperatively available radiological and procedural variables. Class imbalance adjustment, cross-validation, and random dropout were applied to prevent overfitting and ensure robustness of the predictive model. The authors subsequently compared the deep learning model to a conventional logistic regression model and to the Knosp classification as a gold standard.

RESULTS

Overall, 140 patients who underwent endoscopic transsphenoidal surgery were included. GTR was achieved in 95 patients (68%), with a mean extent of resection of 96.8% ± 10.6%. Intraoperative high-field MRI was used in 116 (83%) procedures. The deep learning model achieved excellent area under the curve (AUC; 0.96), accuracy (91%), sensitivity (94%), and specificity (89%). This represents an improvement in comparison with the Knosp classification (AUC: 0.87, accuracy: 81%, sensitivity: 92%, specificity: 70%) and a statistically significant improvement in comparison with logistic regression (AUC: 0.86, accuracy: 82%, sensitivity: 81%, specificity: 83%) (all p < 0.001).

CONCLUSIONS

In this pilot study, the authors demonstrated the utility of applying deep learning to preoperatively predict the likelihood of GTR with excellent performance. Further training and validation in a prospective multicentric cohort will enable the development of an easy-to-use interface for use in clinical practice.

Free access

Machine learning–augmented objective functional testing in the degenerative spine: quantifying impairment using patient-specific five-repetition sit-to-stand assessment

Victor E. Staartjes, Anita M. Klukowska, Moira Vieli, Christiaan H. B. van Niftrik, Martin N. Stienen, Carlo Serra, Luca Regli, W. Peter Vandertop, and Marc L. Schröder

OBJECTIVE

What is considered “abnormal” in clinical testing is typically defined by simple thresholds derived from normative data. For instance, when testing using the five-repetition sit-to-stand (5R-STS) test, the upper limit of normal (ULN) from a population of spine-healthy volunteers (10.5 seconds) is used to identify objective functional impairment (OFI), but this fails to consider different properties of individuals (e.g., taller and shorter, older and younger). Therefore, the authors developed a personalized testing strategy to quantify patient-specific OFI using machine learning.

METHODS

Patients with disc herniation, spinal stenosis, spondylolisthesis, or discogenic chronic low-back pain and a population of spine-healthy volunteers, from two prospective studies, were included. A machine learning model was trained on normative data to predict personalized “expected” test times and their confidence intervals and ULNs (99th percentiles) based on simple demographics. OFI was defined as a test time greater than the personalized ULN. OFI was categorized into types 1 to 3 based on a clustering algorithm. A web app was developed to deploy the model clinically.

RESULTS

Overall, 288 patients and 129 spine-healthy individuals were included. The model predicted “expected” test times with a mean absolute error of 1.18 (95% CI 1.13–1.21) seconds and R2 of 0.37 (95% CI 0.34–0.41). Based on the implemented personalized testing strategy, 191 patients (66.3%) exhibited OFI. Type 1, 2, and 3 impairments were seen in 64 (33.5%), 91 (47.6%), and 36 (18.8%) patients, respectively. Increasing detected levels of OFI were associated with statistically significant increases in subjective functional impairment, extreme anxiety and depression symptoms, being bedridden, extreme pain or discomfort, inability to carry out activities of daily living, and a limited ability to work.

CONCLUSIONS

In the era of “precision medicine,” simple population-based thresholds may eventually not be adequate to monitor quality and safety in neurosurgery. Individualized assessment integrating machine learning techniques provides more detailed and objective clinical assessment. The personalized testing strategy demonstrated concurrent validity with quality-of-life measures, and the freely accessible web app (https://neurosurgery.shinyapps.io/5RSTS/) enabled clinical application.