Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Chelsea Shope x
  • All content x
Clear All Modify Search
Restricted access

Chelsea Shope, Mohammed Alshareef, Thomas Larrew, Christopher Bolling, Justin Reagan, Milad Yazdani, Maria Spampinato, and Ramin Eskandari


Traumatic brain injury (TBI) is a prevalent pediatric pathology in the modern emergency department. Computed tomography (CT) is utilized for detection of TBI and can result in cumulatively high radiation exposure. Recently, a fast brain magnetic resonance imaging (fbMRI) protocol has been employed for rapid imaging of hydrocephalus in pediatric patients. The authors investigate the utility of a modified trauma-focused fbMRI (t-fbMRI) protocol as an alternative to surveillance CT in the setting of acute TBI in pediatric patients, thus reducing radiation exposure while improving diagnostic yield.


A retrospective review was performed at the authors’ institution for all pediatric patients who had undergone t-fbMRI within 72 hours of an initial CT scan, using a 1.5- or 3-T MR scanner for trauma indications. Forty patients met the study inclusion criteria. The authors performed a comparison of findings on the reads of CT and fbMRI, and a board-certified neuroradiologist conducted an independent review of both modalities.


T-fbMRI outperformed CT in specificity, sensitivity, and negative predictive value for all injury pathologies measured, except for skull fractures. T-fbMRI demonstrated a sensitivity of 100% in the detection of extraaxial bleed, intraventricular hemorrhage, and subarachnoid hemorrhage and had a sensitivity of 78% or greater for epidural hematoma, subdural hematoma, and intraparenchymal hemorrhage. T-fbMRI yielded a specificity of 100% for all types of intracranial hemorrhages, with a corresponding negative predictive value that exceeded that for CT.


In pediatric populations, the t-fbMRI protocol provides a valid alternative to CT in the surveillance of TBI and intracranial hemorrhage. Although not as sensitive in the detection of isolated skull fractures, t-fbMRI can be used to monitor pathologies implicated in TBI patients while minimizing radiation exposure from traditional surveillance imaging.