Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Che Ngufor x
Clear All Modify Search
Restricted access

Anshit Goyal, Che Ngufor, Panagiotis Kerezoudis, Brandon McCutcheon, Curtis Storlie and Mohamad Bydon

OBJECTIVE

Nonhome discharge and unplanned readmissions represent important cost drivers following spinal fusion. The authors sought to utilize different machine learning algorithms to predict discharge to rehabilitation and unplanned readmissions in patients receiving spinal fusion.

METHODS

The authors queried the 2012–2013 American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) for patients undergoing cervical or lumbar spinal fusion. Outcomes assessed included discharge to nonhome facility and unplanned readmissions within 30 days after surgery. A total of 7 machine learning algorithms were evaluated. Predictive hierarchical clustering of procedure codes was used to increase model performance. Model performance was evaluated using overall accuracy and area under the receiver operating characteristic curve (AUC), as well as sensitivity, specificity, and positive and negative predictive values. These performance metrics were computed for both the imputed and unimputed (missing values dropped) datasets.

RESULTS

A total of 59,145 spinal fusion cases were analyzed. The incidence rates of discharge to nonhome facility and 30-day unplanned readmission were 12.6% and 4.5%, respectively. All classification algorithms showed excellent discrimination (AUC > 0.80, range 0.85–0.87) for predicting nonhome discharge. The generalized linear model showed comparable performance to other machine learning algorithms. By comparison, all models showed poorer predictive performance for unplanned readmission, with AUC ranging between 0.63 and 0.66. Better predictive performance was noted with models using imputed data.

CONCLUSIONS

In an analysis of patients undergoing spinal fusion, multiple machine learning algorithms were found to reliably predict nonhome discharge with modest performance noted for unplanned readmissions. These results provide early evidence regarding the feasibility of modern machine learning classifiers in predicting these outcomes and serve as possible clinical decision support tools to facilitate shared decision making.