Search Results

You are looking at 1 - 10 of 83 items for

  • Author or Editor: Charles H. Tator x
  • All content x
Clear All Modify Search
Restricted access

Chemotherapy of brain tumors

Uptake of tritiated methotrexate by a transplantable intracerebral ependymoblastoma in mice

Charles H. Tator

✓ The uptake and distribution in brain tumors of a parenterally administered chemotherapeutic agent were studied in mice bearing intracerebral implants of a transplantable ependymoblastoma. Tritiated methotrexate (3H-MTX) was injected intravenously, and autoradiographs of the tumors and adjacent brain were prepared at 2, 10, and 60 min after injection using a technique suitable for soluble compounds. In the tumors at 2 min the drug was mainly intravascular and interstitial while at 60 min the drug was mainly intracellular. This is the first demonstration of cellular uptake of a chemotherapeutic agent by neoplastic cells within the brain. At 60 min, almost all the cells in the central mass of the intracerebral tumors were heavily labeled. However, cells at the periphery of the mass and those infiltrating into adjacent brain showed scanty labeling. Uptake in normal brain was very low, while uptake in edematous brain adjacent to the tumors was much higher although not as high as in the tumors. The study shows that this chemotherapeutic agent is capable of penetrating into the neoplastic cells of an intracerebral tumor following parenteral administration, but that the degree of penetration varies considerably depending on the location of the cells within the brain.

Full access

Michael G. Fehlings and Charles H. Tator

The authors conducted an evidence-based review of the literature to evaluate critically the rationale and indications for and the timing of decompressive surgery for the treatment of acute, nonpenetrating spinal cord injury (SCI).

The experimental and clinical literature concerning the role of, and the biological rationale for surgical decompression for acute SCI was reviewed. Clinical studies of nonoperative management of SCI were also examined for comparative purposes. Evidence from clinical trials was categorized as Class I (well-conducted randomized prospective trials), Class II (well-designed comparative clinical studies), or Class III (retrospective studies).

Studies in which animal models of SCI were used consistently demonstrated a beneficial effect of early surgical decompression, although it is difficult to apply these data directly to the clinical setting. The clinical studies provided suggestive (Class III and limited Class II) evidence that decompressive procedures improve neurological recovery after SCI. However, no clear consensus can be inferred from the literature as to the optimum timing of decompressive surgery. Many authors have advocated delayed treatment to avoid medical complications, although there is good evidence from recent Class II trials that early decompressive surgery can be performed safely without added morbidity or mortality.

There is biological evidence from experimental studies in animals that early surgical decompression may improve neurological recovery after SCI, although the relevant interventional timing in humans remains unclear. To date, the role of surgical decompression in patients with SCI is only supported by Class III and limited Class II evidence. Accordingly, decompressive surgery for SCI can only be considered a practice option. Furthermore, analysis of the literature does not allow definite conclusions to be drawn regarding appropriate timing of intervention. Hence, there is a need to conduct well-designed experimental and clinical studies of the timing and neurological results of surgical decompression for the treatment of acute SCI.

Full access

Charles H. Tator and Izumi Koyanagi

Vascular injury plays an important role in the primary and secondary injury mechanisms that cause damage to the acutely traumatized spinal cord. To understand the pathophysiology of human spinal cord injury, the authors investigated the vascular system in three uninjured human spinal cords using silicone rubber microangiography and analyzed the histological findings related to vascular injury in nine acutely traumatized human spinal cords obtained at autopsy. The interval from spinal cord injury to death ranged from 20 minutes to 9 months. The microangiograms of the uninjured human cervical cords demonstrated new information about the sulcal arterial system and the pial arteries. The centrifugal sulcal arterial system was found to supply all of the anterior gray matter, the anterior half of the posterior gray matter, approximately the inner half of the anterior and lateral white columns, and the anterior half of the posterior white columns. Traumatized spinal cord specimens in the acute stage (3-5 days postinjury) showed severe hemorrhages predominantly in the gray matter, but also in the white matter. The white matter surrounding the hemorrhagic gray matter showed a variety of lesions, including decreased staining, disrupted myelin, and axonal and periaxonal swelling. The white matter lesions extended far from the injury site, especially in the posterior columns. There was no evidence of complete occlusion of any of the larger arteries, including the anterior and posterior spinal arteries and the sulcal arteries. However, occluded intramedullary veins were identified in the degenerated posterior white columns. In the chronic stage (3-9 months postinjury), the injured segments showed major tissue loss with large cavitations, whereas both rostral and caudal remote sites showed well-demarcated necrotic areas indicative of infarction mainly in the posterior white columns. Obstruction of small intramedullary arteries and veins by the initial mechanical stress or secondary injury mechanisms most likely produced these extensive white matter lesions. Our studies implicate damage to the anterior sulcal arteries in causing the hemorrhagic necrosis and subsequent central myelomalacia at the injury site in acute spinal cord injury in humans.

Restricted access

Michael G. Fehlings and Charles H. Tator

Object. The authors conducted an evidence-based review of the literature to evaluate critically the rationale and indications for and the timing of decompressive surgery for the treatment of acute, nonpenetrating spinal cord injury (SCI).

Methods. The experimental and clinical literature concerning the role of, and the biological rationale for, surgical decompression for acute SCI was reviewed. Clinical studies of nonoperative management of SCI were also examined for comparative purposes. Evidence from clinical trials was categorized as Class I (well-conducted randomized prospective trials), Class II (well-designed comparative clinical studies), or Class III (retrospective studies).

Examination of studies in which animal models of SCI were used consistently demonstrated a beneficial effect of early decompressive surgery, although it is difficult to apply these data directly to the clinical setting. The clinical studies provided suggestive (Class III and limited Class II) evidence that decompressive procedures improve neurological recovery after SCI. However, no clear consensus can be inferred from the literature as to the optimum timing for decompressive surgery. Many authors have advocated delayed treatment to avoid medical complications, although good evidence from recent Class II trials indicates that early decompressive surgery can be performed safely without causing added morbidity or mortality.

Conclusions. There is biological evidence from experimental studies in animals that early decompressive surgery may improve neurological recovery after SCI, although the relevant interventional timing in humans remains unclear. To date, the role of surgical decompression in patients with SCI is only supported by Class III and limited Class II evidence. Accordingly, decompressive surgery for SCI can only be considered a practice option. Furthermore, analysis of the literature does not allow definite conclusions to be drawn regarding appropriate timing of intervention. Hence, there is a need to conduct well-designed experimental and clinical studies of the timing and neurological results of decompressive surgery for the treatment of acute SCI.

Full access

Charles H. Tator and Michael G. Fehlings

In this paper the authors review the clinical trials of neuroprotection that have been performed for the treatment of acute spinal cord injury (SCI). The biological rationale for the selection of each treatment modality is discussed with reference to current knowledge of the principles in the management of acute SCI as well as the primary and secondary injury mechanisms identified by experimental and clinical studies of the pathophysiology of acute SCI. The trials are evaluated with regard to the availability and use of accurate clinical outcome measures, and the methodologies of the trials are critically evaluated with an emphasis on prospective randomized controlled studies. A detailed description and critical analysis are provided of the results of the 10 clinical trials conducted to date in which a randomized prospective controlled design has been used. The issue of the therapeutic time window in acute SCI is discussed. To date, methylprednisolone is the only effective neuroprotective agent that has been established for use in human SCI, and the only therapeutic time window established in human SCI is a maximum trauma-to-treatment time of 8 hours.

Restricted access

Dr. Med. Lüder Deecke and Charles H. Tator

✓ Controlled compression of the spinal cord at a given pressure using the circumferential cuff technique has yielded consistent, reproducible cord injury in primates. To test the constancy of the mechanical factors involved, functional tests were performed to study spinal cord conduction before, immediately after, and up to 3 hours after the injury. Two long fiber tracts were tested, the dorsal funiculus and the pyramidal tract. Afferent conduction testing was carried out extradurally recording the afferent volley in the posterior column following sciatic nerve stimulation. The normal triphasic volley before injury changed after injury into a large monophasic positive “killed end potential” at the site of the lesion; an iso-electric line rostral to the lesion site indicated a complete afferent conduction block up to the end of the experiment (3 hours after injury). Efferent conduction was tested by stimulating the pyramidal tract in the cord above the injury site with a special extradural electrode and observing the most distal hind limb movements (flexion of the hallux). The neurophysiology of this type of spinal cord recording and stimulation is discussed as well as its possible importance in establishing the severity of a spinal cord injury, the response to treatment, and the prognosis in patients with spinal cord injuries.