Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Charles E. Cowles x
Clear All Modify Search
Full access

Claudio E. Tatsui, R. Jason Stafford, Jing Li, Jonathan N. Sellin, Behrang Amini, Ganesh Rao, Dima Suki, Amol J. Ghia, Paul Brown, Sun-Ho Lee, Charles E. Cowles, Jeffrey S. Weinberg and Laurence D. Rhines


High-grade malignant spinal cord compression is commonly managed with a combination of surgery aimed at removing the epidural tumor, followed by spinal stereotactic radiosurgery (SSRS) aimed at local tumor control. The authors here introduce the use of spinal laser interstitial thermotherapy (SLITT) as an alternative to surgery prior to SSRS.


Patients with a high degree of epidural malignant compression due to radioresistant tumors were selected for study. Visual analog scale (VAS) scores for pain and quality of life were obtained before and within 30 and 60 days after treatment. A laser probe was percutaneously placed in the epidural space. Real-time thermal MRI was used to monitor tissue damage in the region of interest. All patients received postoperative SSRS. The maximum thickness of the epidural tumor was measured, and the degree of epidural spinal cord compression (ESCC) was scored in pre- and postprocedure MRI.


In the 11 patients eligible for study, the mean VAS score for pain decreased from 6.18 in the preoperative period to 4.27 within 30 days and 2.8 within 60 days after the procedure. A similar VAS interrogating the percentage of quality of life demonstrated improvement from 60% preoperatively to 70% within both 30 and 60 days after treatment. Imaging follow-up 2 months after the procedure demonstrated a significant reduction in the mean thickness of the epidural tumor from 8.82 mm (95% CI 7.38–10.25) before treatment to 6.36 mm (95% CI 4.65–8.07) after SLITT and SSRS (p = 0.0001). The median preoperative ESCC Grade 2 was scored as 4, which was significantly higher than the score of 2 for Grade 1b (p = 0.04) on imaging follow-up 2 months after the procedure.


The authors present the first report on an innovative minimally invasive alternative to surgery in the management of spinal metastasis. In their early experience, SLITT has provided local control with low morbidity and improvement in both pain and the quality of life of patients.

Full access

Marcos V. C. Maldaun, Shumaila N. Khawja, Nicholas B. Levine, Ganesh Rao, Frederick F. Lang, Jeffrey S. Weinberg, Sudhakar Tummala, Charles E. Cowles, David Ferson, Anh-Thuy Nguyen, Raymond Sawaya, Dima Suki and Sujit S. Prabhu


The object of this study was to describe the experience of combining awake craniotomy techniques with high-field (1.5 T) intraoperative MRI (iMRI) for tumors adjacent to eloquent cortex.


From a prospective database the authors obtained and evaluated the records of all patients who had undergone awake craniotomy procedures with cortical and subcortical mapping in the iMRI suite. The integration of these two modalities was assessed with respect to safety, operative times, workflow, extent of resection (EOR), and neurological outcome.


Between February 2010 and December 2011, 42 awake craniotomy procedures using iMRI were performed in 41 patients for the removal of intraaxial tumors. There were 31 left-sided and 11 right-sided tumors. In half of the cases (21 [50%] of 42), the patient was kept awake for both motor and speech mapping. The mean duration of surgery overall was 7.3 hours (range 4.0–13.9 hours). The median EOR overall was 90%, and gross-total resection (EOR ≥ 95%) was achieved in 17 cases (40.5%). After viewing the first MR images after initial resection, further resection was performed in 17 cases (40.5%); the mean EOR in these cases increased from 56% to 67% after further resection. No deficits were observed preoperatively in 33 cases (78.5%), and worsening neurological deficits were noted immediately after surgery in 11 cases (26.2%). At 1 month after surgery, however, worsened neurological function was observed in only 1 case (2.3%).


There was a learning curve with regard to patient positioning and setup times, although it did not adversely affect patient outcomes. Awake craniotomy can be safely performed in a high-field (1.5 T) iMRI suite to maximize tumor resection in eloquent brain areas with an acceptable morbidity profile at 1 month.