Search Results

You are looking at 1 - 10 of 13 items for

  • Author or Editor: Changsheng Qu x
  • Refine by Access: all x
Clear All Modify Search
Restricted access

Dunyue Lu, Asim Mahmood, Changsheng Qu, Anton Goussev, Mei Lu, and Michael Chopp

Object. Atorvastatin, a β-hydroxy-β-methylglutaryl coenzyme A reductase inhibitor, has pleiotropic effects such as improving thrombogenic profile, promoting angiogenesis, and reducing inflammatory responses and has shown promise in enhancing neurological functional improvement and promoting neuroplasticity in animal models of traumatic brain injury (TBI), stroke, and intracranial hemorrhage. The authors tested the effect of atorvastatin on intracranial hematoma after TBI.

Methods. Male Wistar rats were subjected to controlled cortical impact, and atorvastatin (1 mg/kg) was orally administered 1 day after TBI and daily for 7 days thereafter. Rats were killed at 1, 8, and 15 days post-TBI. The temporal profile of intraparenchymal hematoma was measured on brain tissue sections by using a MicroComputer Imaging Device and light microscopy.

Conclusions. Data in this study showed that intraparenchymal and intraventricular hemorrhages are present 1 day after TBI and are absorbed at 15 days after TBI. Furthermore, atorvastatin reduces the volume of intracranial hematoma 8 days after TBI.

Restricted access

Asim Mahmood, Hongtao Wu, Changsheng Qu, Ye Xiong, and Michael Chopp

Object

This study was designed to investigate how transplantation into injured brain of human bone marrow stromal cells (hMSCs) impregnated in collagen scaffolds affects axonal sprouting in the spinal cord after traumatic brain injury (TBI) in rats. Also investigated was the relationship of axonal sprouting to sensorimotor functional recovery after treatment.

Methods

Adult male Wistar rats (n = 24) underwent a controlled cortical impact injury and were divided into three equal groups (8 rats/group). The two treatment groups received either hMSCs (3 × 106) alone or hMSC (3 × 106)–impregnated collagen scaffolds transplanted into the lesion cavity. In the control group, saline was injected into the lesion cavity. All treatments were performed 7 days after TBI. On Day 21 after TBI, a 10% solution of biotinylated dextran amine (10,000 MW) was stereotactically injected into the contralateral motor cortex to label the corticospinal tract (CST) originating from this area. Sensorimotor function was tested using the modified neurological severity score (mNSS) and foot-fault tests performed on Days 1, 7, 14, 21, 28, and 35 after TBI. Spatial learning was tested with Morris water maze test on Days 31–35 after TBI. All rats were sacrificed on Day 35 after TBI, and brain and spinal cord (cervical and lumbar) sections were stained immunohistochemically for histological analysis.

Results

Few biotinylated dextran amine–labeled CST fibers crossing over the midline were found in the contralateral spinal cord transverse sections at both cervical and lumbar levels in saline-treated (control) rats. However, hMSC-alone treatment significantly increased axonal sprouting from the intact CST into the denervated side of the gray matter of both cervical and lumbar levels of the spinal cord (p < 0.05). Also, this axonal sprouting was significantly more in the scaffold+hMSC group compared with the hMSC-alone group (p < 0.05). Sensorimotor functional analysis showed significant improvement of mNSS (p < 0.05) and foot-fault tests (p < 0.05) in hMSC-alone and scaffold+hMSC-treated rats compared with controls (p < 0.05). Functional improvement, however, was significantly greater in the scaffold+hMSC group compared with the hMSC-alone group (p < 0.05). Morris water maze testing also showed significant improvement in spatial learning in scaffold+hMSC and hMSC-alone groups compared with the control group (p < 0.05), with rats in the scaffold+hMSC group performing significantly better than those in the hMSC-alone group (p < 0.05). Pearson correlation data showed significant correlation between the number of crossing CST fibers detected and sensorimotor recovery (p < 0.05).

Conclusions

Axonal plasticity plays an important role in neurorestoration after TBI. Transplanting hMSCs with scaffolds enhances the effect of hMSCs on axonal sprouting of CST fibers from the contralateral intact cortex into the denervated side of spinal cord after TBI. This enhanced axonal regeneration may at least partially contribute to the therapeutic benefits of treating TBI with hMSCs.

Restricted access

Asim Mahmood, Dunyue Lu, Changsheng Qu, Anton Goussev, and Michael Chopp

Object

This study was designed to follow the effects of bone marrow stromal cell (BMSC) administration in rats after traumatic brain injury (TBI) for a 3-month period.

Methods

Forty adult female Wistar rats were injured by a controlled cortical impact and, 1 week later, were injected intravenously with one of three different doses of BMSCs (2 × 106, 4 × 106, or 8 × 106 cells per animal) obtained in male rats. Control rats received phosphate-buffered saline (PBS). Neurological function in these rats was studied using a neurological severity scale (NSS). The rats were killed 3 months after injury, and immunohistochemical stains were applied to brain samples to study the distribution of the BMSCs. Additional brain samples were analyzed by quantitative enzyme-linked immunosorbent assays to measure the expression of the growth factors brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF).

Three months after injury, BMSCs were present in the injured brain and their number was significantly greater in animals that received 4 × 106 or 8 × 106 BMSCs than in animals that received 2 × 106 BMSCs. The cells were primarily distributed around the lesion boundary zone. Functional outcome was significantly better in rats that received 4 × 106 or 8 × 106 BMSCs, compared with control animals, although no improvement was seen in animals that received 2 × 106 BMSCs. All doses of BMSCs significantly increased the expression of BDNF but not that of NGF; however, this increase was significantly larger in animals that received 4 × 106 or 8 × 106 BMSCs than in controls or animals that received 2 × 106 BMSCs.

Conclusions

In summary, when injected in rats after TBI, BMSCs are present in the brain 3 months later and significantly improve functional outcome.

Restricted access

Changsheng Qu, Dunyue Lu, Anton Goussev, Timothy Schallert, Asim Mahmood, and Michael Chopp

Object. Atorvastatin administered after traumatic brain injury (TBI) induced by controlled cortical impact promotes functional improvement in male rats. Note, however, that parallel studies have not been performed in female rats. Therefore, the authors tested the effect of atorvastatin on TBI in female rats.

Methods. Atorvastatin (1 mg/kg/day) was orally administered for 7 consecutive days in female Wistar rats starting 1 day after TBI; control animals received saline. Modified neurological severity scores, the corner turn test, and the Morris water maze test were used to evaluate functional response to treatment. Rats were killed on Day 15 post-TBI, and brain tissue samples were processed for immunohistochemical staining. Atorvastatin administration after brain injury significantly promoted the restoration of spatial memory but did not reduce sensorimotor functional deficits. Treatment of TBI with atorvastatin increased neuronal survival in the CA3 region and the lesion boundary zone and prevented the loss of neuronal processes of damaged neurons in the hippocampal CA3 region but not in the lesion boundary zone on Day 15 after TBI. The protective effect of atorvastatin on the injured neurons perhaps is mediated by increasing the density of vessels in the lesion boundary zone and the hippocampus after TBI.

Conclusions. These data indicate that atorvastatin is beneficial in the treatment of TBI in female rats, although the effect may differ between sexes.

Restricted access

Changsheng Qu, Ye Xiong, Asim Mahmood, David L. Kaplan, Anton Goussev, Ruizhuo Ning, and Michael Chopp

Object

This study was designed to investigate new ways of delivering human marrow stromal cells (hMSCs) to the injured brain by impregnating them into collagen scaffolds in a mouse model of traumatic brain injury (TBI).

Methods

Eight C57BL/6 J mice were injured with controlled cortical impact and received transplantation into the lesion cavity of 0.3 × 106 hMSCs impregnated into 3D porous collagen scaffolds. Additional experimental groups of 8 mice each received scaffolds implanted alone into the lesion cavity, hMSCs administered alone intracerebrally or intravenously, or saline injected into the lesion core. All treatments were performed 7 days after TBI. Spatial learning was measured using a modified Morris water maze test, and brain tissue samples were processed for histopathological analysis.

Results

The results showed that hMSC-impregnated scaffolds were more effective than hMSCs administered alone (either intravenously or intracerebrally) in improving spatial learning, reducing lesion volume, and increasing vascular density after TBI.

Conclusions

Collagen scaffolds populated with hMSCs may be a new way to reconstruct injured brain tissue and improve neurological function after TBI.

Restricted access

Ye Xiong, Asim Mahmood, Yuling Meng, Yanlu Zhang, Changsheng Qu, Timothy Schallert, and Michael Chopp

Object

This efficacy study was designed to investigate traumatic brain injury (TBI) in rats treated with delayed erythropoietin (EPO) administered in a single dose compared with a triple dose.

Methods

Young adult male Wistar rats were randomly divided into the following groups: 1) sham group (6 animals); 2) TBI/saline group (6 animals); 3) TBI/EPO×1 group (6 animals); and 4) TBI/EPO×3 group (7 animals). Traumatic brain injury was induced by controlled cortical impact over the left parietal cortex. Erythropoietin (5000 U/kg) or saline was administered intraperitoneally on Day 1 (EPO×1 group) or on Days 1, 2, and 3 (EPO×3 group) postinjury. Neurological function was assessed using a modified neurological severity score, foot-fault, and Morris water maze tests. Animals were killed 35 days after injury and brain sections were stained for immunohistochemistry.

Results

Compared with the saline treatment, EPO treatment in both the EPO×1 and EPO×3 groups significantly reduced hippocampal cell loss, enhanced angiogenesis and neurogenesis in the injured cortex and hippocampus, and significantly improved neurological functional outcome. The EPO×3 group exhibited significantly improved functional and histological outcomes compared with the EPO×1 group.

Conclusions

These data demonstrate that delayed posttraumatic administration of EPO significantly improved histological and long-term functional outcomes in rats after TBI. The triple doses of delayed EPO treatment produced better histological and functional outcomes in rats, although a single dose provided substantial benefits compared with saline treatment.

Restricted access

Ye Xiong, Dunyue Lu, Changsheng Qu, Anton Goussev, Timothy Schallert, Asim Mahmood, and Michael Chopp

Object

This study was designed to investigate the beneficial effects of recombinant human erythropoietin (rhEPO) treatment of traumatic brain injury (TBI) in mice.

Methods

Adult male C57BL/6 mice were divided into 3 groups: 1) the saline group (TBI and saline [13 mice]); 2) EPO group (TBI and rhEPO [12]); and 3) sham group (sham and rhEPO [8]). Traumatic brain injury was induced by controlled cortical impact. Bromodeoxyuridine (100 mg/kg) was injected daily for 10 days, starting 1 day after injury, for labeling proliferating cells. Recombinant human erythropoietin was administered intraperitoneally at 6 hours and at 3 and 7 days post-TBI (5000 U/kg body weight, total dosage 15,000 U/kg). Neurological function was assessed using the Morris water maze and footfault tests. Animals were killed 35 days after injury, and brain sections were stained for immunohistochemical evaluation.

Results

Traumatic brain injury caused tissue loss in the cortex and cell loss in the dentate gyrus (DG) as well as impairment of sensorimotor function (footfault testing) and spatial learning (Morris water maze). Traumatic brain injury alone stimulated cell proliferation and angiogenesis. Compared with saline treatment, rhEPO significantly reduced lesion volume in the cortex and cell loss in the DG after TBI and substantially improved recovery of sensorimotor function and spatial learning performance. It enhanced neurogenesis in the injured cortex and the DG.

Conclusions

Recombinant human erythropoietin initiated 6 hours post-TBI provided neuroprotection by decreasing lesion volume and cell loss as well as neurorestoration by enhancing neurogenesis, subsequently improving sensorimotor and spatial learning function. It is a promising neuroprotective and neurorestorative agent for TBI and warrants further investigation.

Restricted access

Asim Mahmood, Hongtao Wu, Changsheng Qu, Selina Mahmood, Ye Xiong, David L. Kaplan, and Michael Chopp

Object

Neurocan is a major form of growth-inhibitory molecule (growth-IM) that suppresses axonal regeneration after neural injury. Bone marrow stromal cells (MSCs) have been shown to inhibit neurocan expression in vitro and in animal models of cerebral ischemia. Therefore, the present study was designed to investigate the effects of treatment of MSCs impregnated with collagen scaffolds on neurocan expression after traumatic brain injury (TBI).

Methods

Adult male Wistar rats were injured with controlled cortical impact and treated with saline, human MSCs (hMSCs) (3 × 106) alone, or hMSCs (3 × 106) impregnated into collagen scaffolds (scaffold + hMSCs) transplanted into the lesion cavity 7 days after TBI (20 rats per group). Rats were sacrificed 14 days after TBI, and brain tissues were harvested for immunohistochemical studies, Western blot analyses, laser capture microdissections, and quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) to evaluate neurocan protein and gene expressions after various treatments.

Results

Animals treated with scaffold + hMSCs after TBI showed increased axonal and synaptic densities compared with the other groups. Scaffold + hMSC treatment was associated with reduced TBI-induced neurocan protein expression and upregulated growth-associated protein 43 (GAP-43) and synaptophysin expression in the lesion boundary zone. In addition, animals in the scaffold + hMSC group had decreased neurocan transcription in reactive astrocytes after TBI. Reduction of neurocan expression was significantly greater in the scaffold + hMSC group than in the group treated with hMSCs alone.

Conclusions

The results of this study show that transplanting hMSCs with scaffolds enhances the effect of hMSCs on axonal plasticity in TBI rats. This enhanced axonal plasticity may partially be attributed to the downregulation of neurocan expression by hMSC treatment after injury.

Restricted access

Yuling Meng, Ye Xiong, Asim Mahmood, Yanlu Zhang, Changsheng Qu, and Michael Chopp

Object

Delayed (24 hours postinjury) treatment with erythropoietin (EPO) improves functional recovery following experimental traumatic brain injury (TBI). In this study, the authors tested whether therapeutic effects of delayed EPO treatment for TBI are dose dependent in an attempt to establish an optimal dose paradigm for the delayed EPO treatment.

Methods

Experimental TBI was performed in anesthetized young adult male Wistar rats using a controlled cortical impact device. Sham animals underwent the same surgical procedure without injury. The animals (8 rats/group) received 3 intraperitoneal injections of EPO (0, 1000, 3000, 5000, or 7000 U/kg body weight, at 24, 48, and 72 hours) after TBI. Sensorimotor and cognitive functions were assessed using a modified neurological severity score and foot fault test, and Morris water maze tests, respectively. Animals were killed 35 days after injury, and the brain sections were stained for immunohistochemical analyses.

Results

Compared with the saline treatment, EPO treatment at doses from 1000 to 7000 U/kg did not alter lesion volume but significantly reduced hippocampal neuron loss, enhanced angiogenesis and neurogenesis in the injured cortex and hippocampus, and significantly improved sensorimotor function and spatial learning. The animals receiving the medium dose of 5000 U/kg exhibited a significant improvement in histological and functional outcomes compared with the lower or higher EPO dose groups.

Conclusions

These data demonstrate that delayed (24 hours postinjury) treatment with EPO provides dose-dependent neurorestoration, which may contribute to improved functional recovery after TBI, implying that application of an optimal dose of EPO is likely to increase successful preclinical and clinical trials for treatment of TBI.

Restricted access

Asim Mahmood, Dunyue Lu, Changsheng Qu, Anton Goussev, Zheng Gang Zhang, Chang Lu, and Michael Chopp

Object

This study was designed to investigate the neuroprotective properties of recombinant erythropoietin (EPO) and carbamylated erythropoietin (CEPO) administered following traumatic brain injury (TBI) in rats.

Methods

Sixty adult male Wistar rats were injured with controlled cortical impact, and then EPO, CEPO, or a placebo (phosphate-buffered saline) was injected intraperitoneally. These injections were performed either 6 or 24 hours after TBI. To label newly regenerating cells, bromodeoxyuridine was injected intraperitoneally for 14 days after TBI. Blood samples were obtained on Days 1, 2, 3, 7, 14, and 35 to measure hematocrit. Spatial learning was tested using the Morris water maze. All rats were killed 35 days after TBI. Brain sections were immunostained as well as processed for the enzyme-linked immunosorbent assay to measure brain-derived neurotrophic factor (BDNF).

Results

A statistically significant improvement in spatial learning was seen in rats treated with either EPO or CEPO 6 or 24 hours after TBI (p < 0.05); there was no difference in the effects of EPO and CEPO. Also, these drugs were equally effective in increasing the number of newly proliferating cells within the dentate gyrus at both time points. A statistically significant increase in BDNF expression was seen in animals treated with both EPO derivatives at 6 or 24 hours after TBI. Systemic hematocrit was significantly increased at 48 hours and 1 and 2 weeks after treatment with EPO but not with CEPO.

Conclusions

These data demonstrate that at the doses used, EPO and CEPO are equally effective in enhancing spatial learning and promoting neural plasticity after TBI.