Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Catherine G. Suen x
  • Refine by Access: all x
Clear All Modify Search
Full access

Laura B. Ngwenya, Catherine G. Suen, Phiroz E. Tarapore, Geoffrey T. Manley, and Michael C. Huang

OBJECTIVE

Blood loss and moderate anemia are common in patients with traumatic brain injury (TBI). However, despite evidence of the ill effects and expense of the transfusion of packed red blood cells, restrictive transfusion practices have not been universally adopted for patients with TBI. At a Level I trauma center, the authors compared patients with TBI who were managed with a restrictive (target hemoglobin level > 7 g/dl) versus a liberal (target hemoglobin level > 10 g/dl) transfusion protocol. This study evaluated the safety and cost-efficiency of a hospital-wide change to a restrictive transfusion protocol.

METHODS

A retrospective analysis of patients with TBI who were admitted to the intensive care unit (ICU) between January 2011 and September 2015 was performed. Patients < 16 years of age and those who died within 24 hours of admission were excluded. Demographic data and injury characteristics were compared between groups. Multivariable regression analyses were used to assess hospital outcome measures and mortality rates. Estimates from an activity-based cost analysis model were used to detect changes in cost with transfusion protocol.

RESULTS

A total of 1565 patients with TBI admitted to the ICU were included in the study. Multivariable analysis showed that a restrictive transfusion strategy was associated with fewer days of fever (p = 0.01) and that patients who received a transfusion had a larger fever burden. ICU length of stay, ventilator days, incidence of lung injury, thromboembolic events, and mortality rates were not significantly different between transfusion protocol groups. A restrictive transfusion protocol saved approximately $115,000 annually in hospital direct and indirect costs.

CONCLUSIONS

To the authors’ knowledge, this is the largest study to date to compare transfusion protocols in patients with TBI. The results demonstrate that a hospital-wide change to a restrictive transfusion protocol is safe and cost-effective in patients with TBI.

Free access

Rachel E. Tsolinas, John F. Burke, Anthony M. DiGiorgio, Leigh H. Thomas, Xuan Duong-Fernandez, Mark H. Harris, John K. Yue, Ethan A. Winkler, Catherine G. Suen, Lisa U. Pascual, Adam R. Ferguson, J. Russell Huie, Jonathan Z. Pan, Debra D. Hemmerle, Vineeta Singh, Abel Torres-Espin, Cleopa Omondi, Nikos Kyritsis, Jenny Haefeli, Philip R. Weinstein, Carlos A. de Almeida Neto, Yu-Hung Kuo, Derek Taggard, Jason F. Talbott, William D. Whetstone, Geoffrey T. Manley, Jacqueline C. Bresnahan, Michael S. Beattie, and Sanjay S. Dhall

OBJECTIVE

Traumatic spinal cord injury (SCI) is a dreaded condition that can lead to paralysis and severe disability. With few treatment options available for patients who have suffered from SCI, it is important to develop prospective databases to standardize data collection in order to develop new therapeutic approaches and guidelines. Here, the authors present an overview of their multicenter, prospective, observational patient registry, Transforming Research and Clinical Knowledge in SCI (TRACK-SCI).

METHODS

Data were collected using the National Institute of Neurological Disorders and Stroke (NINDS) common data elements (CDEs). Highly granular clinical information, in addition to standardized imaging, biospecimen, and follow-up data, were included in the registry. Surgical approaches were determined by the surgeon treating each patient; however, they were carefully documented and compared within and across study sites. Follow-up visits were scheduled for 6 and 12 months after injury.

RESULTS

One hundred sixty patients were enrolled in the TRACK-SCI study. In this overview, basic clinical, imaging, neurological severity, and follow-up data on these patients are presented. Overall, 78.8% of the patients were determined to be surgical candidates and underwent spinal decompression and/or stabilization. Follow-up rates to date at 6 and 12 months are 45% and 36.3%, respectively. Overall resources required for clinical research coordination are also discussed.

CONCLUSIONS

The authors established the feasibility of SCI CDE implementation in a multicenter, prospective observational study. Through the application of standardized SCI CDEs and expansion of future multicenter collaborations, they hope to advance SCI research and improve treatment.