Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Catherine A. Mazzola x
  • All content x
Clear All Modify Search
Full access

Catherine A. Mazzola and Arno H. Fried

Chiari malformations comprise four different hindbrain anomalies originally described by Hans Chiari, a professor of pathology at the German University in Prague. There are four basic Chiari malformations. The reasons for revision of Chiari malformation decompression may be for conservative or inadequate initial decompression or the development of postoperative complications. Another reason involves cases of both hindbrain herniation and syringomyelia in patients who have undergone adequate posterior fossa decompression without resolution of symptoms, signs, or radiological appearance of their syrinx cavity. Additionally, symptom recurrence has been reported in association with various types of dural grafts. Reoperation or revision surgery for patients with Chiari malformations is common and may not be due to technical error or inadequate decompression. The types of revision surgeries, their indications, and initial presentations will be reviewed.

Free access

Dimitrios C. Nikas, Alexander F. Post, Asim F. Choudhri, Catherine A. Mazzola, Laura Mitchell, and Ann Marie Flannery

Object

The objective of this systematic review is to answer the following question: Does ventricle size after treatment have a predictive value in determining the effectiveness of surgical intervention in pediatric hydrocephalus?

Methods

The US National Library of Medicine PubMed/MEDLINE database and the Cochrane Database of Systematic Reviews were searched using MeSH headings and key words relevant to change in ventricle size after surgical intervention for hydrocephalus in children. An evidentiary table was assembled summarizing the studies and the quality of evidence (Classes I–III).

Results

Six articles satisfied inclusion criteria for the evidentiary tables for this part of the guidelines. All were Class III retrospective studies.

Conclusions

Recommendation: There is insufficient evidence to recommend a specific change in ventricle size as a measurement of the effective treatment of hydrocephalus and as a measurement of the timing and effectiveness of treatments including ventriculoperitoneal shunts and third ventriculostomies. Strength of Recommendation: Level III, unclear clinical certainty.

Free access

Bharat Guthikonda, Catherine A. Mazzola, Michael P. Steinmetz, Joseph S. Cheng, Jason D. Stacy, Asdrubal Falavigna, and Richard N. W. Wohns

Free access

Mandeep S. Tamber, Paul Klimo Jr., Catherine A. Mazzola, and Ann Marie Flannery

Object

The objective of this systematic review was to answer the following question: What is the optimal treatment strategy for CSF shunt infection in pediatric patients with hydrocephalus?

Methods

The US National Library of Medicine and the Cochrane Database of Systematic Reviews were queried using MeSH headings and key words relevant to the objective of this systematic review. Abstracts were reviewed, after which studies meeting the inclusion criteria were selected and graded according to their quality of evidence (Classes I–III). Evidentiary tables were constructed that summarized pertinent study results, and based on the quality of the literature, recommendations were made (Levels I–III).

Results

A review and critical appraisal of 27 studies that met the inclusion criteria allowed for a recommendation for supplementation of antibiotic treatment using partial (externalization) or complete shunt hardware removal, with a moderate degree of clinical certainty. However, a recommendation regarding whether complete shunt removal is favored over partial shunt removal (that is, externalization) could not be made owing to severe methodological deficiencies in the existing literature. There is insufficient evidence to recommend the use of intrathecal antibiotic therapy as an adjunct to systemic antibiotic therapy in the management of routine CSF shunt infections. This also holds true for other clinical scenarios such as when an infected CSF shunt cannot be completely removed, when a shunt must be removed and immediately replaced in the face of ongoing CSF infection, or when the setting is ventricular shunt infection caused by specific organisms (for example, gram-negative bacteria).

Conclusions

Supplementation of antibiotic treatment with partial (externalization) or complete shunt hardware removal are options in the management of CSF shunt infection. There is insufficient evidence to recommend either shunt externalization or complete shunt removal as the preferred surgical strategy for the management of CSF shunt infection. Therefore, clinical judgment is required. In addition, there is insufficient evidence to recommend the combination of intrathecal and systemic antibiotics for patients with CSF shunt infection when the infected shunt hardware cannot be fully removed, when the shunt must be removed and immediately replaced, or when the CSF shunt infection is caused by specific organisms. The potential neurotoxicity of intrathecal antibiotic therapy may limit its routine use.

Recommendation: Supplementation of antibiotic treatment with partial (externalization) or with complete shunt hardware removal is an option in the management of CSF shunt infection. Strength of Recommendation: Level II, moderate degree of clinical certainty.

Recommendation: There is insufficient evidence to recommend either shunt externalization or complete shunt removal as a preferred surgical strategy for the management of CSF shunt infection. Therefore, clinical judgment is required. Strength of Recommendation: Level III, unclear degree of clinical certainty.

Recommendation: There is insufficient evidence to recommend the combination of intrathecal and systemic antibiotics for patients with CSF shunt infection in whom the infected shunt hardware cannot be fully removed or must be removed and immediately replaced, or when the CSF shunt infection is caused by specific organisms. The potential neurotoxicity of intrathecal antibiotic therapy may limit its routine use. Strength of Recommendation: Level III, unclear degree of clinical certainty.

Free access

Lissa C. Baird, Catherine A. Mazzola, Kurtis I. Auguste, Paul Klimo Jr., and Ann Marie Flannery

Object

The objective of this systematic review was to examine the existing literature to compare differing shunt components used to treat hydrocephalus in children, find whether there is a superior shunt design for the treatment of pediatric hydrocephalus, and make evidence-based recommendations for the selection of shunt implants when placing shunts.

Methods

Both the US National Library of Medicine PubMed/MEDLINE database and the Cochrane Database of Systematic Reviews were queried using MeSH headings and key words chosen to identify publications comparing the use of shunt implant components. Abstracts of these publications were reviewed, after which studies meeting the inclusion criteria were selected. An evidentiary table was compiled summarizing the selected articles and quality of evidence. These data were then analyzed by the Pediatric Hydrocephalus Systematic Review and Evidence-Based Guidelines Task Force to consider evidence-based treatment recommendations.

Results

Two hundred sixty-nine articles were identified using the search parameters, and 43 articles were recalled for full-text review. Of these, 22 papers met the study criteria for a comparison of shunt components and were included in the evidentiary table. The included studies consisted of 1 Class I study, 11 Class II studies, and 10 Class III studies. The remaining 21 articles were excluded.

Conclusions

An analysis of the evidence did not demonstrate a clear advantage for any specific shunt component, mechanism, or valve design over another.

Recommendation: There is insufficient evidence to demonstrate an advantage for one shunt hardware design over another in the treatment of pediatric hydrocephalus. Current designs described in the evidentiary tables are all treatment options. Strength of Recommendation: Level I, high degree of clinical certainty.

Recommendation: There is insufficient evidence to recommend the use of a programmable valve versus a nonprogrammable valve. Programmable and nonprogrammable valves are both options for the treatment of pediatric hydrocephalus. Strength of Recommendation: Level II, moderate degree of clinical certainty.

Free access

Catherine A. Mazzola, Asim F. Choudhri, Kurtis I. Auguste, David D. Limbrick Jr., Marta Rogido, Laura Mitchell, and Ann Marie Flannery

Object

The objective of this systematic review and analysis was to answer the following question: What are the optimal treatment strategies for posthemorrhagic hydrocephalus (PHH) in premature infants?

Methods

Both the US National Library of Medicine and the Cochrane Database of Systematic Reviews were queried using MeSH headings and key words relevant to PHH. Two hundred thirteen abstracts were reviewed, after which 98 full-text publications that met inclusion criteria that had been determined a priori were selected and reviewed.

Results

Following a review process and an evidentiary analysis, 68 full-text articles were accepted for the evidentiary table and 30 publications were rejected. The evidentiary table was assembled linking recommendations to strength of evidence (Classes I–III).

Conclusions

There are 7 recommendations for the management of PHH in infants. Three recommendations reached Level I strength, which represents the highest degree of clinical certainty. There were two Level II and two Level III recommendations for the management of PHH.

Recommendation Concerning Surgical Temporizing Measures: I. Ventricular access devices (VADs), external ventricular drains (EVDs), ventriculosubgaleal (VSG) shunts, or lumbar punctures (LPs) are treatment options in the management of PHH. Clinical judgment is required. Strength of Recommendation: Level II, moderate degree of clinical certainty.

Recommendation Concerning Surgical Temporizing Measures: II. The evidence demonstrates that VSG shunts reduce the need for daily CSF aspiration compared with VADs. Strength of Recommendation: Level II, moderate degree of clinical certainty.

Recommendation Concerning Routine Use of Serial Lumbar Puncture: The routine use of serial lumbar puncture is not recommended to reduce the need for shunt placement or to avoid the progression of hydrocephalus in premature infants. Strength of Recommendation: Level I, high clinical certainty.

Recommendation Concerning Nonsurgical Temporizing Agents: I. Intraventricular thrombolytic agents including tissue plasminogen activator (tPA), urokinase, or streptokinase are not recommended as methods to reduce the need for shunt placement in premature infants with PHH. Strength of Recommendation: Level I, high clinical certainty.

Recommendation Concerning Nonsurgical Temporizing Agents. II. Acetazolamide and furosemide are not recommended as methods to reduce the need for shunt placement in premature infants with PHH. Strength of Recommendation: Level I, high clinical certainty.

Recommendation Concerning Timing of Shunt Placement: There is insufficient evidence to recommend a specific weight or CSF parameter to direct the timing of shunt placement in premature infants with PHH. Clinical judgment is required. Strength of Recommendation: Level III, unclear clinical certainty.

Recommendation Concerning Endoscopic Third Ventriculostomy: There is insufficient evidence to recommend the use of endoscopic third ventriculostomy (ETV) in premature infants with posthemorrhagic hydrocephalus. Strength of Recommendation: Level III, unclear clinical certainty.

Free access

Ann Marie Flannery, Catherine A. Mazzola, Paul Klimo Jr., Ann-Christine Duhaime, Lissa C. Baird, Mandeep S. Tamber, David D. Limbrick Jr., Dimitrios C. Nikas, Joanna Kemp, Alexander F. Post, Kurtis I. Auguste, Asim F. Choudhri, Laura S. Mitchell, and Debby Buffa