Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Carolyn A. Harris x
  • All content x
Clear All Modify Search
Full access

Brian W. Hanak, Emily F. Ross, Carolyn A. Harris, Samuel R. Browd, and William Shain

OBJECTIVE

Shunt obstruction by cells and/or tissue is the most common cause of shunt failure. Ventricular catheter obstruction alone accounts for more than 50% of shunt failures in pediatric patients. The authors sought to systematically collect explanted ventricular catheters from the Seattle Children's Hospital with a focus on elucidating the cellular mechanisms underlying obstruction.

METHODS

In the operating room, explanted hardware was placed in 4% paraformaldehyde. Weekly, samples were transferred to buffer solution and stored at 4°C. After consent was obtained for their use, catheters were labeled using cell-specific markers for astrocytes (glial fibrillary acidic protein), microglia (ionized calcium-binding adapter molecule 1), and choroid plexus (transthyretin) in conjunction with a nuclear stain (Hoechst). Catheters were mounted in custom polycarbonate imaging chambers. Three-dimensional, multispectral, spinning-disk confocal microscopy was used to image catheter cerebrospinal fluid–intake holes (10× objective, 499.2-μm-thick z-stack, 2.4-μm step size, Olympus IX81 inverted microscope with motorized stage and charge-coupled device camera). Values are reported as the mean ± standard error of the mean and were compared using a 2-tailed Mann-Whitney U-test. Significance was defined at p < 0.05.

RESULTS

Thirty-six ventricular catheters have been imaged to date, resulting in the following observations: 1) Astrocytes and microglia are the dominant cell types bound directly to catheter surfaces; 2) cellular binding to catheters is ubiquitous even if no grossly visible tissue is apparent; and 3) immunohistochemical techniques are of limited utility when a catheter has been exposed to Bugbee wire electrocautery. Statistical analysis of 24 catheters was performed, after excluding 7 catheters exposed to Bugbee wire cautery, 3 that were poorly fixed, and 2 that demonstrated pronounced autofluorescence. This analysis revealed that catheters with a microglia-dominant cellular response tended to be implanted for shorter durations (24.7 ± 6.7 days) than those with an astrocyte-dominant response (1183 ± 642 days; p = 0.027).

CONCLUSIONS

Ventricular catheter occlusion remains a significant source of shunt morbidity in the pediatric population, and given their ability to intimately associate with catheter surfaces, astrocytes and microglia appear to be critical to this pathophysiology. Microglia tend to be the dominant cell type on catheters implanted for less than 2 months, while astrocytes tend to be the most prevalent cell type on catheters implanted for longer time courses and are noted to serve as an interface for the secondary attachment of ependymal cells and choroid plexus.

Restricted access

Sulmaz Zahedi, Miles Hudson, Xin Jin, Richard Justin Garling, Jacob Gluski, Caden Nowak, Neena I. Marupudi, Paul Begeman, and Carolyn A. Harris

OBJECTIVE

This investigation is aimed at gaining a better understanding of the factors that lead to mechanical failure of shunts used for the treatment of hydrocephalus, including shunt catheter-valve disconnection and shunt catheter fracture.

METHODS

To determine the root cause of mechanical failure, the authors created a benchtop mechanical model to mimic mechanical stressors on a shunt system. To test shunt fracture, cyclical loading on the catheter-valve connection site was tested with the shunt catheter held perpendicular to the valve. Standard methods were used to secure the catheter and valves with Nurolon. These commercial systems were compared to integrated catheters and valves (manufactured as one unit). To test complete separation/disconnection of the shunt catheter and valve, a parallel displacement test was conducted using both Nurolon and silk sutures. Finally, the stiffness of the catheters was assessed. All mechanical investigations were conducted on shunts from two major shunt companies, assigned as either company A or company B.

RESULTS

Cyclical loading experiments found that shunts from company B fractured after a mean of 4936 ± 1725 cycles (95% CI 2990–6890 cycles), while those of company A had not failed after 8000 cycles. The study of parallel displacement indicated complete disconnection of company B’s shunt catheter-valve combination using Nurolon sutures after being stretched an average 32 ± 5.68 mm (95% CI 25.6–38.4 mm), whereas company A’s did not separate using either silk or Nurolon sutures. During the stiffness experiments, the catheters of company B had statistically significantly higher stiffness of 13.23 ± 0.15 N compared to those of company A, with 6.16 ± 0.29 N (p < 0.001).

CONCLUSIONS

Mechanical shunt failure from shunt catheter-valve disconnection or fracture is a significant cause of shunt failure. This study demonstrates, for the first time, a correlation between shunt catheters that are less mechanically stiff and those that are less likely to disconnect from the valve when outstretched and are also less likely to tear when held at an angle from the valve outlet. The authors propose an intervention to the standard of care wherein less stiff catheters are trialed to reduce disconnection.