Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Brittany M. Stopa x
  • All content x
Clear All Modify Search
Free access

Brittany M. Stopa, Joeky T. Senders, Marike L. D. Broekman, Mark Vangel, and Alexandra J. Golby

OBJECTIVE

Functional MRI (fMRI) is increasingly being investigated for use in neurosurgical patient care. In the current study, the authors characterize the clinical use of fMRI by surveying neurosurgeons’ use of and attitudes toward fMRI as a surgical planning tool in neurooncology patients.

METHODS

A survey was developed to inquire about clinicians’ use of and experiences with preoperative fMRI in the neurooncology patient population, including example case images. The survey was distributed to all neurosurgical departments with a residency program in the US.

RESULTS

After excluding incomplete surveys and responders that do not use fMRI (n = 11), 50 complete responses were included in the final analysis. Responders were predominantly from academic programs (88%), with 20 years or more in practice (40%), with a main area of practice in neurooncology (48%) and treating an adult population (90%). All 50 responders currently use fMRI in neurooncology patients, mostly for low- (94%) and high-grade glioma (82%). The leading decision factors for ordering fMRI were location of mass in dominant hemisphere, location in a functional area, motor symptoms, and aphasia. Across 10 cases, language fMRI yielded the highest interrater reliability agreement (Fleiss’ kappa 0.437). The most common reasons for ordering fMRI were to identify language laterality, plan extent of resection, and discuss neurological risks with patients. Clinicians reported that fMRI results were not obtained when ordered a median 10% of the time and were suboptimal a median 27% of the time. Of responders, 70% reported that they had ever resected an fMRI-positive functional site, of whom 77% did so because the site was “cleared” by cortical stimulation. Responders reported disagreement between fMRI and awake surgery 30% of the time. Overall, 98% of responders reported that if results of fMRI and intraoperative mapping disagreed, they would rely on intraoperative mapping.

CONCLUSIONS

Although fMRI is increasingly being adopted as a practical preoperative planning tool for brain tumor resection, there remains a substantial degree of discrepancy with regard to its current use and presumed utility. There is a need for further research to evaluate the use of preoperative fMRI in neurooncology patients. As fMRI continues to gain prominence, it will be important for clinicians to collectively share best practices and develop guidelines for the use of fMRI in the preoperative planning phase of brain tumor patients.

Restricted access

Brittany M. Stopa, Maya Harary, Ray Jhun, Arun Job, Saef Izzy, Timothy R. Smith, and William B. Gormley

OBJECTIVE

Traumatic brain injury (TBI) is a leading cause of morbidity and mortality in the US, but the true incidence of TBI is unknown.

METHODS

The National Trauma Data Bank National Sample Program (NTDB NSP) was queried for 2007 and 2013, and population-based weighted estimates of TBI-related emergency department (ED) visits, hospitalizations, and deaths were calculated. These data were compared to the 2017 Centers for Disease Control and Prevention (CDC) report on TBI, which used the Healthcare Cost and Utilization Project’s National (“Nationwide” before 2012) Inpatient Sample and National Emergency Department Sample.

RESULTS

In the NTDB NSP the incidence of TBI-related ED visits was 59/100,000 in 2007 and 62/100,000 in 2013. However, in the CDC report there were 534/100,000 in 2007 and 787/100,000 in 2013. The CDC estimate for ED visits was 805% higher in 2007 and 1169% higher in 2013. In the NTDB NSP, the incidence of TBI-related deaths was 5/100,000 in 2007 and 4/100,000 in 2013. In the CDC report, the incidence was 18/100,000 in both years. The CDC estimate for deaths was 260% higher in 2007 and 325% higher in 2013.

CONCLUSIONS

The databases disagreed widely in their weighted estimates of TBI incidence: CDC estimates were consistently higher than NTDB NSP estimates, by an average of 448%. Although such a discrepancy may be intuitive, this is the first study to quantify the magnitude of disagreement between these databases. Given that research, funding, and policy decisions are made based on these estimates, there is a need for a more accurate estimate of the true national incidence of TBI.

Restricted access

Predicting nonroutine discharge after elective spine surgery: external validation of machine learning algorithms

Presented at the 2019 AANS/CNS Joint Section on Disorders of the Spine and Peripheral Nerves

Brittany M. Stopa, Faith C. Robertson, Aditya V. Karhade, Melissa Chua, Marike L. D. Broekman, Joseph H. Schwab, Timothy R. Smith, and William B. Gormley

OBJECTIVE

Nonroutine discharge after elective spine surgery increases healthcare costs, negatively impacts patient satisfaction, and exposes patients to additional hospital-acquired complications. Therefore, prediction of nonroutine discharge in this population may improve clinical management. The authors previously developed a machine learning algorithm from national data that predicts risk of nonhome discharge for patients undergoing surgery for lumbar disc disorders. In this paper the authors externally validate their algorithm in an independent institutional population of neurosurgical spine patients.

METHODS

Medical records from elective inpatient surgery for lumbar disc herniation or degeneration in the Transitional Care Program at Brigham and Women’s Hospital (2013–2015) were retrospectively reviewed. Variables included age, sex, BMI, American Society of Anesthesiologists (ASA) class, preoperative functional status, number of fusion levels, comorbidities, preoperative laboratory values, and discharge disposition. Nonroutine discharge was defined as postoperative discharge to any setting other than home. The discrimination (c-statistic), calibration, and positive and negative predictive values (PPVs and NPVs) of the algorithm were assessed in the institutional sample.

RESULTS

Overall, 144 patients underwent elective inpatient surgery for lumbar disc disorders with a nonroutine discharge rate of 6.9% (n = 10). The median patient age was 50 years and 45.1% of patients were female. Most patients were ASA class II (66.0%), had 1 or 2 levels fused (80.6%), and had no diabetes (91.7%). The median hematocrit level was 41.2%. The neural network algorithm generalized well to the institutional data, with a c-statistic (area under the receiver operating characteristic curve) of 0.89, calibration slope of 1.09, and calibration intercept of −0.08. At a threshold of 0.25, the PPV was 0.50 and the NPV was 0.97.

CONCLUSIONS

This institutional external validation of a previously developed machine learning algorithm suggests a reliable method for identifying patients with lumbar disc disorder at risk for nonroutine discharge. Performance in the institutional cohort was comparable to performance in the derivation cohort and represents an improved predictive value over clinician intuition. This finding substantiates initial use of this algorithm in clinical practice. This tool may be used by multidisciplinary teams of case managers and spine surgeons to strategically invest additional time and resources into postoperative plans for this population.

Full access

Alexander F. C. Hulsbergen, Sandra C. Yan, Brittany M. Stopa, Aislyn DiRisio, Joeky T. Senders, Max J. van Essen, Stéphanie M. E. van der Burgt, Timothy R. Smith, William B. Gormley, and Marike L. D. Broekman

OBJECTIVE

The value of CT scanning after burr hole surgery in chronic subdural hematoma (CSDH) patients is unclear, and practice differs between countries. At the Brigham and Women’s Hospital (BWH) in Boston, Massachusetts, neurosurgeons frequently order routine postoperative CT scans, while the University Medical Center Utrecht (UMCU) in the Netherlands does not have this policy. The aim of this study was to compare the use of postoperative CT scans in CSDH patients between these hospitals and to evaluate whether there are differences in clinical outcomes.

METHODS

The authors collected data from both centers for 391 age- and sex-matched CSDH patients treated with burr hole surgery between January 1, 2002, and July 1, 2016, and compared the number of postoperative scans up to 6 weeks after surgery, the need for re-intervention, and postoperative neurological condition.

RESULTS

BWH patients were postoperatively scanned a median of 4 times (interquartile range [IQR] 2–5), whereas UMCU patients underwent a median of 0 scans (IQR 0–1, p < 0.001). There was no significant difference in the number of re-operations (20 in the BWH vs 27 in the UMCU, p = 0.34). All re-interventions were preceded by clinical decline and no recurrences were detected on scans performed on asymptomatic patients. Patients’ neurological condition was not worse in the UMCU than in the BWH (p = 0.43).

CONCLUSIONS

While BWH patients underwent more scans than UMCU patients, there were no differences in clinical outcomes. The results of this study suggest that there is little benefit to routine scanning in asymptomatic patients who have undergone surgical treatment of uncomplicated CSDH and highlight opportunities to make practice more efficient.