Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Brendan J. McShane x
Clear All Modify Search
Restricted access

Frederick L. Hitti, Kerry A. Vaughan, Ashwin G. Ramayya, Brendan J. McShane and Gordon H. Baltuch

OBJECTIVE

Deep brain stimulation (DBS) has revolutionized the treatment of neurological disease, but its therapeutic efficacy is limited by the lifetime of the implantable pulse generator (IPG) batteries. At the end of the battery life, IPG replacement surgery is required. New IPGs with rechargeable batteries (RC-IPGs) have recently been introduced and allow for decreased reoperation rates for IPG replacements. The authors aimed to examine the merits and limitations of these devices.

METHODS

The authors reviewed the medical records of patients who underwent DBS implantation at their institution. RC-IPGs were placed either during initial DBS implantation or during an IPG change. A cost analysis was performed that compared RC-IPGs with standard IPGs, and telephone patient surveys were conducted to assess patient satisfaction.

RESULTS

The authors identified 206 consecutive patients from 2011 to 2016 who underwent RC-IPG placement (mean age 61 years; 67 women, 33%). Parkinson’s disease was the most common indication for DBS (n = 144, 70%), followed by essential tremor (n = 41, 20%), dystonia (n = 13, 6%), depression (n = 5, 2%), multiple sclerosis tremor (n = 2, 1%), and epilepsy (n = 1, 0.5%). DBS leads were typically placed bilaterally (n = 192, 93%) and targeted the subthalamic nucleus (n = 136, 66%), ventral intermediate nucleus of the thalamus (n = 43, 21%), internal globus pallidus (n = 21, 10%), ventral striatum (n = 5, 2%), or anterior nucleus of the thalamus (n = 1, 0.5%). RC-IPGs were inserted at initial DBS implantation in 123 patients (60%), while 83 patients (40%) were converted to RC-IPGs during an IPG replacement surgery. The authors found that RC-IPG implantation resulted in $60,900 of cost savings over the course of 9 years. Furthermore, patient satisfaction was high with RC-IPG implantation. Overall, 87.3% of patients who responded to the survey were satisfied with their device, and only 6.7% found the rechargeable component difficult to use. In patients who were switched from a standard IPG to RC-IPG, the majority who responded (70.3%) preferred the rechargeable IPG.

CONCLUSIONS

RC-IPGs can provide DBS patients with long-term therapeutic benefit while minimizing the need for battery replacement surgery. The authors have implanted rechargeable stimulators in 206 patients undergoing DBS surgery, and here they demonstrate the cost-effectiveness and high patient satisfaction associated with this procedure.

Restricted access

Frederick L. Hitti, Ashwin G. Ramayya, Brendan J. McShane, Andrew I. Yang, Kerry A. Vaughan and Gordon H. Baltuch

OBJECTIVE

Deep brain stimulation (DBS) is an effective treatment for several movement disorders, including Parkinson’s disease (PD). While this treatment has been available for decades, studies on long-term patient outcomes have been limited. Here, the authors examined survival and long-term outcomes of PD patients treated with DBS.

METHODS

The authors conducted a retrospective analysis using medical records of their patients to identify the first 400 consecutive patients who underwent DBS implantation at their institution from 1999 to 2007. The medical record was used to obtain baseline demographics and neurological status. The authors performed survival analyses using Kaplan-Meier estimation and multivariate regression using Cox proportional hazards modeling. Telephone surveys were used to determine long-term outcomes.

RESULTS

Demographics for the cohort of patients with PD (n = 320) were as follows: mean age of 61 years, 70% male, 27% of patients had at least 1 medical comorbidity (coronary artery disease, congestive heart failure, diabetes mellitus, atrial fibrillation, or deep vein thrombosis). Kaplan-Meier survival analysis on a subset of patients with at least 10 years of follow-up (n = 200) revealed a survival probability of 51% (mean age at death 73 years). Using multivariate regression, the authors found that age at implantation (HR 1.02, p = 0.01) and male sex (HR 1.42, p = 0.02) were predictive of reduced survival. Number of medical comorbidities was not significantly associated with survival (p > 0.5). Telephone surveys were completed by 40 surviving patients (mean age 55.1 ± 6.4 years, 72.5% male, 95% subthalamic nucleus DBS, mean follow-up 13.0 ± 1.7 years). Tremor responded best to DBS (72.5% of patients improved), while other motor symptoms remained stable. Ability to conduct activities of daily living (ADLs) remained stable (dressing, 78% of patients; running errands, 52.5% of patients) or worsened (preparing meals, 50% of patients). Patient satisfaction, however, remained high (92.5% happy with DBS, 95% would recommend DBS, and 75% felt it provided symptom control).

CONCLUSIONS

DBS for PD is associated with a 10-year survival rate of 51%. Survey data suggest that while DBS does not halt disease progression in PD, it provides durable symptomatic relief and allows many individuals to maintain ADLs over long-term follow-up greater than 10 years. Furthermore, patient satisfaction with DBS remains high at long-term follow-up.

Restricted access

Andrew I. Yang, Brendan J. McShane, Frederick L. Hitti, Sukhmeet K. Sandhu, H. Isaac Chen and John Y. K. Lee

OBJECTIVE

First-line treatment for trigeminal neuralgia (TN) is pharmacological management using antiepileptic drugs (AEDs), e.g., carbamazepine (CBZ) and oxcarbazepine (OCBZ). Surgical intervention has been shown to be an effective and durable treatment for TN that is refractory to medical therapy. Despite the lack of evidence for efficacy in patients with TN, the authors hypothesized that patients with neuropathic facial pain are prescribed opioids at high rates, and that neurosurgical intervention may lead to a reduction in opioid use.

METHODS

This is a retrospective study of patients with facial pain seen by a single neurosurgeon. All patients completed a survey on pain medications, medical comorbidities, prior interventions for facial pain, and a validated pain outcome tool (the Penn Facial Pain Scale). Patients subsequently undergoing neurosurgical intervention completed a survey at the 1-month follow-up in the office, in addition to telephone interviews using a standardized script between 1 and 6 years after intervention. Univariate and multivariate logistic regression were used to predict opioid use.

RESULTS

The study cohort consisted of 309 patients (70% Burchiel type 1 TN [TN1], 18% Burchiel type 2 [TN2], 6% atypical facial pain [AFP], and 6% TN secondary to multiple sclerosis [TN-MS]). At initial presentation, 20% of patients were taking opioids. Of these patients, 55% were receiving concurrent opioid therapy with CBZ/OCBZ, and 84% were receiving concurrent therapy with at least one type of AED. Facial pain diagnosis (for diagnoses other than TN1, odds ratio [OR] 2.5, p = 0.01) and facial pain intensity at its worst (for each unit increase, OR 1.4, p = 0.005) were predictors of opioid use at baseline. Neurosurgical intervention led to a reduction in opioid use to 8% at long-term follow-up (p < 0.01, Fisher’s exact test; n = 154). Diagnosis (for diagnoses other than TN1, OR 4.7, p = 0.002) and postintervention reduction in pain at its worst (for each unit reduction, OR 0.8, p < 10−3) were predictors of opioid use at long-term follow-up. On subgroup analysis, patients with TN1 demonstrated a decrease in opioid use to 5% at long-term follow-up (p < 0.05, Fisher’s exact test), whereas patients with non-TN1 facial pain did not. In the nonsurgical group, there was no statistically significant decrease in opioid use at long-term follow-up (n = 81).

CONCLUSIONS

In spite of its high potential for abuse, opioid use, mostly as an adjunct to AEDs, is prevalent in patients with facial pain. Opportunities to curb opioid use in TN1 include earlier neurosurgical intervention.

Restricted access

Tracy M. Flanders, Rachel Blue, Sanford Roberts, Brendan J. McShane, Bryan Wilent, Vijay Tambi, Dmitriy Petrov and John Y. K. Lee

OBJECTIVE

Hemifacial spasm (HFS) is characterized by involuntary tonic and/or clonic contractions of facial nerve muscles. Fully endoscopic microvascular decompression (E-MVD) for HFS has not been widely adopted. This paper aims to illustrate the safety and efficacy of the fully endoscopic technique for HFS treatment.

METHODS

The authors conducted a single-center retrospective study of 27 patients (28 separate E-MVD cases; 1 patient had bilateral E-MVD) diagnosed with HFS who underwent fully E-MVD from January 2013 to October 2016. Intraoperative brainstem auditory evoked potentials and lateral spread resolution were reviewed. Outcome was based on the clinical status of the patient at the last contact point with the senior author. Complications were categorized as facial weakness, hearing loss, ataxia, dysphagia, or any adverse event able to be attributed to the surgical procedure.

RESULTS

HFS was relieved either completely or partially in the majority of cases (24 of 28, 85.7%). Of the 28 separate procedures, 17 (60.7%) resulted in complete resolution of symptoms, 4 (14.3%) resulted in near-complete resolution, 2 (7.1%) resulted in 50% reduction of symptoms, 1 (3.6%) resulted in minimal reduction, and 4 (14.3%) resulted in no relief. Of the 27 patients, 26 (96%) had no permanent postoperative complications. In multivariate logistic regression, the best predictor of greater than 50% resolution of spasm was resolution of intraoperative lateral spread response.

CONCLUSIONS

A fully E-MVD for HFS provides a safe and comprehensive view of the neurovascular conflict. Exclusive use of the endoscope in MVD is both safe and feasible in the treatment of HFS. Attention to lateral spread response monitoring remains an integral part of comprehensive neurosurgical management.

Restricted access

Zarina S. Ali, Tracy M. Flanders, Ali K. Ozturk, Neil R. Malhotra, Lena Leszinsky, Brendan J. McShane, Diana Gardiner, Kristin Rupich, H. Isaac Chen, James Schuster, Paul J. Marcotte, Michael J. Kallan, M. Sean Grady, Lee A. Fleisher and William C. Welch

OBJECTIVE

Enhanced recovery after surgery (ERAS) protocols address pre-, peri-, and postoperative factors of a patient’s surgical journey. The authors sought to assess the effects of a novel ERAS protocol on clinical outcomes for patients undergoing elective spine or peripheral nerve surgery.

METHODS

The authors conducted a prospective cohort analysis comparing clinical outcomes of patients undergoing elective spine or peripheral nerve surgery after implementation of the ERAS protocol compared to a historical control cohort in a tertiary care academic medical center. Patients in the historical cohort (September–December 2016) underwent traditional surgical care. Patients in the intervention group (April–June 2017) were enrolled in a unique ERAS protocol created by the Department of Neurosurgery at the University of Pennsylvania. Primary objectives were as follows: opioid and nonopioid pain medication consumption, need for opioid use at 1 month postoperatively, and patient-reported pain scores. Secondary objectives were as follows: mobilization and ambulation status, Foley catheter use, need for straight catheterization, length of stay, need for ICU admission, discharge status, and readmission within 30 days.

RESULTS

A total of 201 patients underwent surgical care via an ERAS protocol and were compared to a total of 74 patients undergoing traditional perioperative care (control group). The 2 groups were similar in baseline demographics. Intravenous opioid medications postoperatively via patient-controlled analgesia was nearly eliminated in the ERAS group (0.5% vs 54.1%, p < 0.001). This change was not associated with an increase in the average or daily pain scores in the ERAS group. At 1 month following surgery, a smaller proportion of patients in the ERAS group were using opioids (38.8% vs 52.7%, p = 0.041). The ERAS group demonstrated greater mobilization on postoperative day 0 (53.4% vs 17.1%, p < 0.001) and postoperative day 1 (84.1% vs 45.7%, p < 0.001) compared to the control group. Postoperative Foley use was decreased in the ERAS group (20.4% vs 47.3%, p < 0.001) without an increase in the rate of straight catheterization (8.1% vs 11.9%, p = 0.51).

CONCLUSIONS

Implementation of this novel ERAS pathway safely reduces patients’ postoperative opioid requirements during hospitalization and 1 month postoperatively. ERAS results in improved postoperative mobilization and ambulation.

Restricted access

Robert M. Starke, David J. McCarthy, Ching-Jen Chen, Hideyuki Kano, Brendan McShane, John Lee, David Mathieu, Lucas T. Vasas, Anthony M. Kaufmann, Wei Gang Wang, Inga S. Grills, Mohana Rao Patibandla, Christopher P. Cifarelli, Gabriella Paisan, John A. Vargo, Tomas Chytka, Ladislava Janouskova, Caleb E. Feliciano, Rafael Rodriguez-Mercado, Daniel A. Tonetti, L. Dade Lunsford and Jason P. Sheehan

OBJECTIVE

In this multicenter study, the authors reviewed the results obtained in patients who underwent Gamma Knife radiosurgery (GKRS) for dural arteriovenous fistulas (dAVFs) and determined predictors of outcome.

METHODS

Data from a cohort of 114 patients who underwent GKRS for cerebral dAVFs were compiled from the International Gamma Knife Research Foundation. Favorable outcome was defined as dAVF obliteration and no posttreatment hemorrhage or permanent symptomatic radiation-induced complications. Patient and dAVF characteristics were assessed to determine predictors of outcome in a multivariate logistic regression analysis; dAVF-free obliteration was calculated in a competing-risk survival analysis; and Youden indices were used to determine optimal radiosurgical dose.

RESULTS

A mean margin dose of 21.8 Gy was delivered. The mean follow-up duration was 4 years (range 0.5–18 years). The overall obliteration rate was 68.4%. The postradiosurgery actuarial rates of obliteration at 3, 5, 7, and 10 years were 41.3%, 61.1%, 70.1%, and 82.0%, respectively. Post-GRKS hemorrhage occurred in 4 patients (annual risk of 0.9%). Radiation-induced imaging changes occurred in 10.4% of patients; 5.2% were symptomatic, and 3.5% had permanent deficits. Favorable outcome was achieved in 63.2% of patients. Patients with middle fossa and tentorial dAVFs (OR 2.4, p = 0.048) and those receiving a margin dose greater than 23 Gy (OR 2.6, p = 0.030) were less likely to achieve a favorable outcome. Commonly used grading scales (e.g., Borden and Cognard) were not predictive of outcome. Female sex (OR 1.7, p = 0.03), absent venous ectasia (OR 3.4, p < 0.001), and cavernous carotid location (OR 2.1, p = 0.019) were predictors of GKRS-induced dAVF obliteration.

CONCLUSIONS

GKRS for cerebral dAVFs achieved obliteration and avoided permanent complications in the majority of patients. Those with cavernous carotid location and no venous ectasia were more likely to have fistula obliteration following radiosurgery. Commonly used grading scales were not reliable predictors of outcome following radiosurgery.

Restricted access

Amitabh Gupta, Zhiyuan Xu, Hideyuki Kano, Nathaniel Sisterson, Yan-Hua Su, Michal Krsek, Ahmed M. Nabeel, Amr El-Shehaby, Khaled A. Karim, Nuria Martínez-Moreno, David Mathieu, Brendan J. McShane, Roberto Martínez-Álvarez, Wael A. Reda, Roman Liscak, Cheng-Chia Lee, L. Dade Lunsford and Jason P. Sheehan

OBJECTIVE

Gamma Knife radiosurgery (GKS) is typically used after failed resection in patients with Cushing’s disease (CD) and acromegaly. Little is known about the upfront role of GKS for patients with CD and acromegaly. In this study, the authors examine the outcome of upfront GKS for patients with these functioning adenomas.

METHODS

An international group of 7 Gamma Knife centers sent pooled data from 46 patients (21 with CD and 25 with acromegaly) undergoing upfront GKS to the coordinating center of the study for analysis. Diagnosis was established on the basis of clinical, endocrine, and radiological studies. All patients were treated on a common radiosurgical platform and longitudinally followed for tumor control, endocrine remission, and hypopituitarism. Patients received a tumor median margin dose of 25 Gy (range 12–40.0 Gy) at a median isodose of 50%.

RESULTS

The median endocrine follow-up was 69.5 months (range 9–246 months). Endocrine remission was achieved in 51% of the entire cohort, with 28% remission in acromegaly and 81% remission for those with CD at the 5-year interval. Patients with CD achieved remission earlier as compared to those with acromegaly (p = 0.0005). In patients post-GKS, the pituitary adenoma remained stable (39%) or reduced (61%) in size. Hypopituitarism occurred in 9 patients (19.6%), and 1 (2.2%) developed third cranial nerve (CN III) palsy. Eight patients needed further intervention, including repeat GKS in 6 and transsphenoidal surgery in 2.

CONCLUSIONS

Upfront GKS resulted in good tumor control as well as a low rate of adverse radiation effects in the whole group. Patients with CD achieved a faster and far better remission rate after upfront GKS in comparison to patients with acromegaly. GKS can be considered as an upfront treatment in carefully selected patients with CD who are unwilling or unable to undergo resection, but it has a more limited role in acromegaly.

Restricted access

Robert M. Starke, David J. McCarthy, Ching-Jen Chen, Hideyuki Kano, Brendan J. McShane, John Lee, Mohana Rao Patibandla, David Mathieu, Lucas T. Vasas, Anthony M. Kaufmann, Wei Gang Wang, Inga S. Grills, Christopher P. Cifarelli, Gabriella Paisan, John Vargo, Tomas Chytka, Ladislava Janouskova, Caleb E. Feliciano, Nanthiya Sujijantarat, Charles Matouk, Veronica Chiang, Judith Hess, Rafael Rodriguez-Mercado, Daniel A. Tonetti, L. Dade Lunsford and Jason P. Sheehan

OBJECTIVE

The authors performed a study to evaluate the hemorrhagic rates of cerebral dural arteriovenous fistulas (dAVFs) and the risk factors of hemorrhage following Gamma Knife radiosurgery (GKRS).

METHODS

Data from a cohort of patients undergoing GKRS for cerebral dAVFs were compiled from the International Radiosurgery Research Foundation. The annual posttreatment hemorrhage rate was calculated as the number of hemorrhages divided by the patient-years at risk. Risk factors for dAVF hemorrhage prior to GKRS and during the latency period after radiosurgery were evaluated in a multivariate analysis.

RESULTS

A total of 147 patients with dAVFs were treated with GKRS. Thirty-six patients (24.5%) presented with hemorrhage. dAVFs that had any cortical venous drainage (CVD) (OR = 3.8, p = 0.003) or convexity or torcula location (OR = 3.3, p = 0.017) were more likely to present with hemorrhage in multivariate analysis. Half of the patients had prior treatment (49.7%). Post-GRKS hemorrhage occurred in 4 patients, with an overall annual risk of 0.84% during the latency period. The annual risks of post-GKRS hemorrhage for Borden type 2–3 dAVFs and Borden type 2–3 hemorrhagic dAVFs were 1.45% and 0.93%, respectively. No hemorrhage occurred after radiological confirmation of obliteration. Independent predictors of hemorrhage following GKRS included nonhemorrhagic neural deficit presentation (HR = 21.6, p = 0.027) and increasing number of past endovascular treatments (HR = 1.81, p = 0.036).

CONCLUSIONS

Patients have similar rates of hemorrhage before and after radiosurgery until obliteration is achieved. dAVFs that have any CVD or are located in the convexity or torcula were more likely to present with hemorrhage. Patients presenting with nonhemorrhagic neural deficits and a history of endovascular treatments had higher risks of post-GKRS hemorrhage.