Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Brandon Lucke-Wold x
Clear All Modify Search
Free access

Brandon Lucke-Wold, Erik C. Brown, Justin S. Cetas, Aclan Dogan, Sachin Gupta, Timothy E. Hullar, Timothy L. Smith and Jeremy N. Ciporen

Cerebrospinal fluid (CSF) leaks occur in approximately 10% of patients undergoing a translabyrinthine, retrosigmoid, or middle fossa approach for vestibular schwannoma resection. Cerebrospinal fluid rhinorrhea also results from trauma, neoplasms, and congenital defects. A high degree of difficulty in repair sometimes requires repetitive microsurgical revisions—a rate of 10% of cases is often cited. This can not only lead to morbidity but is also costly and burdensome to the health care system. In this case-based theoretical analysis, the authors summarize the literature regarding endoscopic endonasal techniques to obliterate the eustachian tube (ET) as well as compare endoscopic endonasal versus open approaches for repair. Given the results of their analysis, they recommend endoscopic endonasal ET obliteration (EEETO) as a first- or second-line technique for the repair of CSF rhinorrhea from a lateral skull base source refractory to spontaneous healing and CSF diversion. They present a case in which EEETO resolved refractory CSF rhinorrhea over a 10-month follow-up after CSF diversions, wound reexploration, revised packing of the ET via a lateral microscopic translabyrinthine approach, and the use of a vascularized flap had failed. They further summarize the literature regarding studies that describe various iterations of EEETO. By its minimally invasive nature, EEETO imposes less morbidity as well as less risk to the patient. It can be readily implemented into algorithms once CSF diversion (for example, lumbar drain) has failed, prior to considering open surgery for repair. Additional studies are warranted to further demonstrate the outcome and cost-saving benefits of EEETO as the data until now have been largely empirical yet very hopeful. The summaries and technical notes described in this paper may serve as a resource for those skull base teams faced with similar challenging and otherwise refractory CSF leaks from a lateral skull base source.

Restricted access

Brandon P. Lucke-Wold, Ryan C. Turner, Aric F. Logsdon, Linda Nguyen, Julian E. Bailes, John M. Lee, Matthew J. Robson, Bennet I. Omalu, Jason D. Huber and Charles L. Rosen


Chronic traumatic encephalopathy is a progressive neurodegenerative disease characterized by neurofibrillary tau tangles following repetitive neurotrauma. The underlying mechanism linking traumatic brain injury to chronic traumatic encephalopathy has not been elucidated. The authors investigate the role of endoplasmic reticulum stress as a link between acute neurotrauma and chronic neurodegeneration.


The authors used pharmacological, biochemical, and behavioral tools to assess the role of endoplasmic reticulum stress in linking acute repetitive traumatic brain injury to the development of chronic neurodegeneration. Data from the authors’ clinically relevant and validated rodent blast model were compared with those obtained from postmortem human chronic traumatic encephalopathy specimens from a National Football League player and World Wrestling Entertainment wrestler.


The results demonstrated strong correlation of endoplasmic reticulum stress activation with subsequent tau hyperphosphorylation. Various endoplasmic reticulum stress markers were increased in human chronic traumatic encephalopathy specimens, and the endoplasmic reticulum stress response was associated with an increase in the tau kinase, glycogen synthase kinase–3β. Docosahexaenoic acid, an endoplasmic reticulum stress inhibitor, improved cognitive performance in the rat model 3 weeks after repetitive blast exposure. The data showed that docosahexaenoic acid administration substantially reduced tau hyperphosphorylation (t = 4.111, p < 0.05), improved cognition (t = 6.532, p < 0.001), and inhibited C/EBP homology protein activation (t = 5.631, p < 0.01). Additionally the data showed, for the first time, that endoplasmic reticulum stress is involved in the pathophysiology of chronic traumatic encephalopathy.


Docosahexaenoic acid therefore warrants further investigation as a potential therapeutic agent for the prevention of chronic traumatic encephalopathy.