Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Benjamin Emanuel x
  • Refine by Access: all x
Clear All Modify Search
Free access

Praveen K. Belur, Jason J. Chang, Shuhan He, Benjamin A. Emanuel, and William J. Mack

Intracerebral hemorrhage (ICH) is associated with a higher degree of morbidity and mortality than other stroke subtypes. Despite this burden, currently approved treatments have demonstrated limited efficacy. To date, therapeutic strategies have principally targeted hematoma expansion and resultant mass effect. However, secondary mechanisms of brain injury are believed to be critical effectors of cell death and neurological outcome following ICH. This article reviews the pathophysiology of secondary brain injury relevant to ICH, examines pertinent experimental models, and highlights emerging therapeutic strategies. Treatment paradigms discussed include thrombin inhibitors, deferoxamine, minocycline, statins, granulocyte-colony stimulating factors, and therapeutic hypothermia. Despite promising experimental and preliminary human data, further studies are warranted prior to effective clinical translation.

Full access

Leonid I. Groysman, Benjamin A. Emanuel, May A. Kim-Tenser, Gene Y. Sung, and William J. Mack

Induced hypothermia has been used for neuroprotection in cardiac and neurovascular procedures. Experimental and translational studies provide evidence for its utility in the treatment of ischemic cerebrovascular disease. Over the past decade, these principles have been applied to the clinical management of acute stroke. Varying induction methods, time windows, clinical indications, and adjuvant therapies have been studied. In this article the authors review the mechanisms and techniques for achieving therapeutic hypothermia in the setting of acute stroke, and they outline pertinent side effects and complications. The manuscript summarizes and examines the relevant clinical trials to date. Despite a reasonable amount of existing data, this review suggests that additional trials are warranted to define the optimal time window, temperature regimen, and precise clinical indications for induction of therapeutic hypothermia in the setting of acute stroke.

Restricted access

Ben A. Strickland, Giuseppe Barisano, Aidin Abedi, Mark S. Shiroishi, Steven Cen, Benjamin Emanuel, Sebina Bulic, May Kim-Tenser, Peggy Nguyen, Steven L. Giannotta, William Mack, and Jonathan Russin

OBJECTIVE

Aneurysmal subarachnoid hemorrhage (aSAH)–induced vasospasm is linked to increased inflammatory cell trafficking across a permeable blood-brain barrier (BBB). Elevations in serum levels of matrix metalloprotease 9 (MMP9), a BBB structural protein, have been implicated in the pathogenesis of vasospasm onset. Minocycline is a potent inhibitor of MMP9. The authors sought to detect an effect of minocycline on BBB permeability following aSAH.

METHODS

Patients presenting within 24 hours of symptom onset with imaging confirmed aSAH (Fisher grade 3 or 4) were randomized to high-dose (10 mg/kg) minocycline or placebo. The primary outcome of interest was BBB permeability as quantitated by contrast signal intensity ratios in vascular regions of interest on postbleed day (PBD) 5 magnetic resonance permeability imaging. Secondary outcomes included serum MMP9 levels and radiographic and clinical evidence of vasospasm.

RESULTS

A total of 11 patients were randomized to minocycline (n = 6) or control (n = 5) groups. No adverse events or complications attributable to minocycline were reported. High-dose minocycline administration was associated with significantly lower permeability indices on imaging analysis (p < 0.01). There was no significant difference with respect to serum MMP9 levels between groups, although concentrations trended upward in both cohorts. Radiographic vasospasm was noted in 6 patients (minocycline = 3, control = 3), with only 1 patient developing symptoms of clinical vasospasm in the minocycline cohort. There was no difference between cohorts with respect to Lindegaard ratios, transcranial Doppler values, or onset of vasospasm.

CONCLUSIONS

Minocycline at high doses is well tolerated in the ruptured cerebral aneurysm population. Minocycline curtails breakdown of the BBB following aSAH as evidenced by lower permeability indices, though minocycline did not significantly alter serum MMP9 levels. Larger randomized clinical trials are needed to assess minocycline as a neuroprotectant against aSAH-induced vasospasm.

Clinical trial registration no.: NCT04876638 (clinicaltrials.gov)