Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Barbara J. Bailey x
Clear All Modify Search
Full access

Haiyan Wang, Shanbao Cai, Barbara J. Bailey, M. Reza Saadatzadeh, Jixin Ding, Eva Tonsing-Carter, Taxiarchis M. Georgiadis, T. Zachary Gunter, Eric C. Long, Robert E. Minto, Kevin R. Gordon, Stephanie E. Sen, Wenjing Cai, Jacob A. Eitel, David L. Waning, Lauren R. Bringman, Clark D. Wells, Mary E. Murray, Jann N. Sarkaria, Lawrence M. Gelbert, David R. Jones, Aaron A. Cohen-Gadol, Lindsey D. Mayo, Harlan E. Shannon and Karen E. Pollok


Improvement in treatment outcome for patients with glioblastoma multiforme (GBM) requires a multifaceted approach due to dysregulation of numerous signaling pathways. The murine double minute 2 (MDM2) protein may fulfill this requirement because it is involved in the regulation of growth, survival, and invasion. The objective of this study was to investigate the impact of modulating MDM2 function in combination with front-line temozolomide (TMZ) therapy in GBM.


The combination of TMZ with the MDM2 protein–protein interaction inhibitor nutlin3a was evaluated for effects on cell growth, p53 pathway activation, expression of DNA repair proteins, and invasive properties. In vivo efficacy was assessed in xenograft models of human GBM.


In combination, TMZ/nutlin3a was additive to synergistic in decreasing growth of wild-type p53 GBM cells. Pharmacodynamic studies demonstrated that inhibition of cell growth following exposure to TMZ/nutlin3a correlated with: 1) activation of the p53 pathway, 2) downregulation of DNA repair proteins, 3) persistence of DNA damage, and 4) decreased invasion. Pharmacokinetic studies indicated that nutlin3a was detected in human intracranial tumor xenografts. To assess therapeutic potential, efficacy studies were conducted in a xenograft model of intracranial GBM by using GBM cells derived from a recurrent wild-type p53 GBM that is highly TMZ resistant (GBM10). Three 5-day cycles of TMZ/nutlin3a resulted in a significant increase in the survival of mice with GBM10 intracranial tumors compared with single-agent therapy.


Modulation of MDM2/p53-associated signaling pathways is a novel approach for decreasing TMZ resistance in GBM. To the authors' knowledge, this is the first study in a humanized intracranial patient-derived xenograft model to demonstrate the efficacy of combining front-line TMZ therapy and an inhibitor of MDM2 protein–protein interactions.