Search Results

You are looking at 1 - 10 of 18 items for

  • Author or Editor: Ayako Ochi x
Clear All Modify Search
Full access

Chusak Limotai, Cristina Y. Go, Shiro Baba, Kazuo Okanari, Ayako Ochi, James T. Rutka, O. Carter Snead III and Hiroshi Otsubo

Infants with Sturge-Weber syndrome (SWS) are considered for surgery if they develop seizures and the seizures prove medically refractory. The authors report on 2 infants (15 and 19 months old) with SWS who underwent scalp video electroencephalography (EEG) and subsequent functional hemispherotomy for intractable partial motor seizures due to extensive left hemispheric angiomatosis. They presented with similar interictal and ictal EEG findings. Ictal EEG showed abrupt high-amplitude delta slow waves, without evolution on the contralateral hemisphere before the build-up of ictal EEG changes on the lesional hemisphere. The patients became seizure free after hemispherotomy. The ictal contralateral slow waves were not a sign of an ictal hemisphere and may indicate prominent ischemic changes resulting from a steal phenomenon of hemispheric angiomatosis during seizure.

Restricted access

Jeffrey P. Blount, Wayne Langburt, Hiroshi Otsubo, Shiro Chitoku, Ayako Ochi, Shelly Weiss, O. Carter Snead and James T. Rutka

Object. The technique involved in multiple subpial transections (MSTs) allows the surgeon treating patients with epilepsy the capability to make disconnective lesions in epileptogenic regions of eloquent cortex. Although there have been increasing numbers of reports in adults of the efficacy and relative safety of this technique, there are relatively few such reports in children. The authors present their experience in 30 children who underwent MSTs during the surgical management of the seizure disorder.

Methods. Thirty consecutive children who underwent MSTs with or without cortical excision form the basis of this retrospective review. An analysis of neurological adverse effects following MSTs and seizure outcome was performed.

Between 1996 and 2000, MSTs were performed either as stand-alone therapy (four patients) or in conjunction with planned cortical excisions (26 patients). Twenty-three children underwent invasive monitoring after placement of subdural grid electrodes, and in seven intraoperative electrocorticography alone was performed. The mean follow-up period for the group was 3.5 years (minimum 30 months in all cases). All 20 patients in whom MSTs were performed in the primary motor cortex experienced transient hemiparesis (mild in 12 and moderate in eight) lasting up to 6 weeks; however, no patient suffered a permanent motor deficit in the long-term follow-up period. In 26 patients who underwent cortical resections followed by MSTs, 12 (46%) were seizure free (Engel Class I) following surgery. Eleven patients (42%) (Engel Classes II and III) continued to suffer seizures but improvement in seizure control was adequate following surgery. In the 23 patients in whom subdural grids were placed to capture the ictal onset zone by invasive video-electroencephalography, MSTs comprised a mean of 37% of the surgically treated area under the grid.

Conclusions. The results of this series demonstrate that MSTs can be performed with acceptable morbidity in children undergoing epilepsy surgery. The precise role of MSTs in controlling seizure frequency and outcome, especially when combined with planned cortical resections, awaits further study.

Full access

Zulma S. Tovar-Spinoza, Ayako Ochi, James T. Rutka, Cristina Go and Hiroshi Otsubo

Epilepsy surgery requires the precise localization of the epileptogenic zone and the anatomical localization of eloquent cortex so that these areas can be preserved during cortical resection. Magnetoencephalography (MEG) is a technique that maps interictal magnetic dipole sources onto MR imaging to produce a magnetic source image. Magneto-encephalographic spike sources can be used to localize the epileptogenic zone and be part of the workup of the patient for epilepsy surgery in conjunction with data derived from an analysis of seizure semiology, scalp video electroencephalography, PET, functional MR imaging, and neuropsychological testing. In addition, magnetoencephalographic spike sources can be linked to neuronavigation platforms for use in the neurosurgical field. Finally, paradigms have been developed so that MEG can be used to identify functional areas of the cerebral cortex including the somatosensory, motor, language, and visual evoked fields.

The authors review the basic principles of MEG and the utility of MEG for presurgical planning as well as intra-operative mapping and discuss future applications of MEG technology.

Restricted access

Won Seok Chang, Midori Nakajima, Ayako Ochi, Elysa Widjaja, James T. Rutka, Ivanna Yau, Shiro Baba and Hiroshi Otsubo

Advanced dynamic statistical parametric mapping (AdSPM) with magnetoencephalography (MEG) was used to identify MRI-negative epileptogenic lesions in this report. A 15-year-old girl had MRI-negative and pharmacology-resistant focal-onset epilepsy. She experienced two types of seizures. Type I consisted of her arousal from sleep, staring, and a forced head-turning movement to the left, followed by secondary generalization. Type II began with an aura of dizziness followed by staring and postictal headache with fatigue. Scalp video-electroencephalography (EEG) captured two type I seizures originating from the right frontocentral region. MEG showed scattered dipoles over the right frontal region. AdSPM identified the spike source at the bottom of the right inferior frontal sulcus. Intracranial video-EEG captured one type I seizure, which originated from the depth electrode at the bottom of the sulcus and correlated with the AdSPM spike source. Accordingly, the patient underwent resection of the middle and inferior frontal gyri, including the AdSPM-identified spike source. Histopathological examination revealed that the patient had focal cortical dysplasia type IIB. To date, the patient has been seizure free for 2 years while receiving topiramate treatment. This is the first preliminary report to identify MRI-negative epilepsy using AdSPM. Further investigation of AdSPM would be valuable for cases of MRI-negative focal epilepsy.

Restricted access

Çagatay Önal, Hiroshi Otsubo, Takashi Araki, Shiro Chitoku, Ayako Ochi, Shelly Weiss, William Logan, Irene Elliott, O. Carter Snead III and James T. Rutka

Object. This study was performed to evaluate the complications of invasive subdural grid monitoring during epilepsy surgery in children.

Methods. The authors retrospectively reviewed the records of 35 consecutive children with intractable localization-related epilepsy who underwent invasive video electroencephalography (EEG) with subdural grid electrodes at The Hospital for Sick Children between 1996 and 2001. After subdural grid monitoring and identification of the epileptic regions, cortical excisions and/or multiple subpial transections (MSTs) were performed. Complications after these procedures were then categorized as either surgical or neurological.

There were 17 male and 18 female patients whose mean age was 11.7 years. The duration of epilepsy before surgery ranged from 2 to 17 years (mean 8.3 years). Fifteen children (43%) had previously undergone surgical procedures for epilepsy. The number of electrodes on the grids ranged from 40 to 117 (mean 95). During invasive video EEG, cerebrospinal fluid leaks occurred in seven patients. Also, cerebral edema (five patients), subdural hematoma (five patients), and intracerebral hematoma (three patients) were observed on postprocedural imaging studies but did not require surgical intervention. Hypertrophic scars on the scalp were observed in nine patients. There were three infections, including one case of osteomyelitis and two superficial wound infections. Blood loss and the amounts of subsequent transfusions correlated directly with the size and number of electrodes on the grids (p < 0.001). Twenty-eight children derived significant benefit from cortical resections and MSTs, with a more than 50% reduction of seizures and a mean follow-up period of 30 months.

Conclusions. The results of this study indicate that carefully selected pediatric patients with intractable epilepsy can benefit from subdural invasive monitoring procedures that entail definite but acceptable risks.

Full access

Erin N. Kiehna, Elysa Widjaja, Stephanie Holowka, O. Carter Snead III, James Drake, Shelly K. Weiss, Ayako Ochi, Eric M. Thompson, Cristina Go, Hiroshi Otsubo, Elizabeth J. Donner and James T. Rutka

OBJECT

Hemispherectomy for unilateral, medically refractory epilepsy is associated with excellent long-term seizure control. However, for patients with recurrent seizures following disconnection, workup and investigation can be challenging, and surgical options may be limited. Few studies have examined the role of repeat hemispherotomy in these patients. The authors hypothesized that residual fiber connections between the hemispheres could be the underlying cause of recurrent epilepsy in these patients. Diffusion tensor imaging (DTI) was used to test this hypothesis, and to target residual connections at reoperation using neuronavigation.

METHODS

The authors identified 8 patients with recurrent seizures following hemispherectomy who underwent surgery between 1995 and 2012. Prolonged video electroencephalography recordings documented persistent seizures arising from the affected hemisphere. In all patients, DTI demonstrated residual white matter association fibers connecting the hemispheres. A repeat craniotomy and neuronavigation-guided targeted disconnection of these residual fibers was performed. Engel class was used to determine outcome after surgery at a minimum of 2 years of follow-up.

RESULTS

Two patients underwent initial hemidecortication and 6 had periinsular hemispherotomy as their first procedures at a median age of 9.7 months. Initial pathologies included hemimegalencephaly (n = 4), multilobar cortical dysplasia (n = 3), and Rasmussen's encephalitis (n = 1). The mean duration of seizure freedom for the group after the initial procedure was 32.5 months (range 6–77 months). In all patients, DTI showed limited but definite residual connections between the 2 hemispheres, primarily across the rostrum/genu of the corpus callosum. The median age at reoperation was 6.8 years (range 1.3–14 years). The average time taken for reoperation was 3 hours (range 1.8–4.3 hours), with a mean blood loss of 150 ml (range 50–250 ml). One patient required a blood transfusion. Five patients are seizure free, and the remaining 3 patients are Engel Class II, with a minimum follow-up of 24 months for the group.

CONCLUSIONS

Repeat hemispherotomy is an option for consideration in patients with recurrent intractable epilepsy following failed surgery for catastrophic epilepsy. In conjunction with other modalities to establish seizure onset zones, advanced MRI and DTI sequences may be of value in identifying patients with residual connectivity between the affected and unaffected hemispheres. Targeted disconnection of these residual areas of connectivity using neuronavigation may result in improved seizure outcomes, with minimal and acceptable morbidity.

Restricted access

Cristina V. Torres, Aria Fallah, George M. Ibrahim, Samuel Cheshier, Hiroshi Otsubo, Ayako Ochi, Sylvester Chuang, O. Carter Snead, Stephanie Holowka and James T. Rutka

Object

Hemispherectomy is an established neurosurgical procedure for medication-resistant epilepsy in children. Despite the effectiveness of this technique, there are patients who do not achieve an optimum outcome after surgery; possible causes of suboptimal results include the presence of bilateral independent epileptogenic foci. Magnetoencephalography (MEG) is an emerging tool that has been found to be useful in the management of lesional and nonlesional epilepsy. The authors analyzed the relative contribution of MEG in patient selection for hemispherectomy.

Methods

The medical records of children undergoing hemispherectomy at the Hospital for Sick Children were reviewed. Those patients who underwent MEG as part of the presurgical evaluation were selected.

Results

Thirteen patients were included in the study. Nine patients were boys. The mean age at the time of surgery was 66 months (range 10–149 months). Seizure etiology was Rasmussen encephalitis in 6 patients, hemimegalencephaly in 2 patients, and cortical dysplasia in 4 patients. In 8 patients, video-EEG and MEG results were consistent to localize the primary epileptogenic hemisphere. In 2 patients, video-EEG lateralized the ictal onset, but MEG showed bilateral spikes. Two patients had bilateral video-EEG and MEG spikes. Engel Class I, II, and IV outcomes were seen in 10, 2, and 1 patients, respectively. In 2 of the patients who had an outcome other than Engel Class I, the MEG clusters were concentrated in the disconnected hemisphere. The third patient had bilateral clusters and potentially independent epileptogenic foci from bilateral cortical dysplasia.

Conclusions

The presence of unilateral MEG spike waves correlated with good outcomes following hemispherectomy. In some cases, MEG provides information that differs from that obtained from video-EEG and conventional MR imaging studies. Further studies with a greater number of patients are needed to assess the role of MEG in the preoperative assessment of candidates for hemispherectomy.

Restricted access

Eisha A. Christian, Elysa Widjaja, Ayako Ochi, Hiroshi Otsubo, Stephanie Holowka, Elizabeth Donner, Shelly K. Weiss, Cristina Go, James Drake, O. Carter Snead and James T. Rutka

OBJECTIVE

Small lesions at the depth of the sulcus, such as with bottom-of-sulcus focal cortical dysplasia, are not visible from the surface of the brain and can therefore be technically challenging to resect. In this technical note, the authors describe their method of using depth electrodes as landmarks for the subsequent resection of these exacting lesions.

METHODS

A retrospective review was performed on pediatric patients who had undergone invasive electroencephalography with depth electrodes that were subsequently used as guides for resection in the period between July 2015 and June 2017.

RESULTS

Ten patients (3–15 years old) met the criteria for this study. At the same time as invasive subdural grid and/or strip insertion, between 2 and 4 depth electrodes were placed using a hand-held frameless neuronavigation technique. Of the total 28 depth electrodes inserted, all were found within the targeted locations on postoperative imaging. There was 1 patient in whom an asymptomatic subarachnoid hemorrhage was demonstrated on postprocedural imaging. Depth electrodes aided in target identification in all 10 cases.

CONCLUSIONS

Depth electrodes placed at the time of invasive intracranial electrode implantation can be used to help localize, target, and resect primary zones of epileptogenesis caused by bottom-of-sulcus lesions.

Restricted access

Shobhan Vachhrajani, Sandrine de Ribaupierre, Hiroshi Otsubo, Ayako Ochi, Shelly K. Weiss, Elizabeth J. Donner, Elysa Widjaja, Elizabeth Kerr, Mary Lou Smith, James Drake, O. Carter Snead III and James T. Rutka

Object

Pediatric frontal lobe epilepsy (FLE) remains a challenging condition for neurosurgeons and epileptologists to manage. Postoperative seizure outcomes remain far inferior to those observed in temporal lobe epilepsies, possibly due to inherent difficulties in delineating and subsequently completely resecting responsible epileptogenic regions. In this study, the authors review their institutional experience with the surgical management of FLE and attempt to find predictors that may help to improve seizure outcome in this population.

Methods

All surgically treated cases of intractable FLE from 1990 to 2008 were reviewed. Demographic information, preoperative and intraoperative imaging and electrophysiological investigations, and follow-up seizure outcome were assessed. Inferential statistics were performed to look for potential predictors of seizure outcome.

Results

Forty patients (20 male, 20 female) underwent surgical management of FLE during the study period. Patients were an average of 5.6 years old at the time of FLE onset and 11.7 years at the time of surgery; patients were followed for a mean of 40.25 months. Most patients displayed typical FLE semiology. Twenty-eight patients had discrete lesions identified on MRI. Eight patients underwent 2 operations. Cortical dysplasia was the most common pathological diagnosis. Engel Class I outcome was obtained in 25 patients (62.5%), while Engel Class II outcome was observed in 5 patients (12.5%). No statistically significant predictors of outcome were found.

Conclusions

Control of FLE remains a challenging problem. Favorable seizure outcome, obtained in 62% of patients in this series, is still not as easily obtained in FLE as it is in temporal lobe epilepsy. While no statistically significant predictors of seizure outcome were revealed in this study, patients with FLE continue to require extensive workup and investigation to arrive at a logical and comprehensive neurosurgical treatment plan. Future studies with improved neuroimaging and advanced invasive monitoring strategies may well help define factors for success in this form of epilepsy that is difficult to control.

Restricted access

Koji Iida, Hiroshi Otsubo, Yuuri Matsumoto, Ayako Ochi, Makoto Oishi, Stephanie Holowka, Elizabeth Pang, Irene Elliott, Shelly K. Weiss, Sylvester H. Chuang, O. Carter Snead III and James T. Rutka

Object. The authors sought to validate magnetoencephalography spike sources (MEGSSs) in neuronavigation during epilepsy surgery in pediatric patients.

Methods. The distributions of MEGSSs in 16 children were defined and classified as clusters (Class I), greater than or equal to 20 MEGSSs with 1 cm or less between MEGSSs; small clusters (Class II), 6 to 19 with 1 cm or less between; and scatters (Class III), less than 6 or greater than 1 cm between spike sources. Using neuronavigation, the MEGSSs were correlated to epileptic zones from intra- and extraoperative electrocorticography (ECoG), surgical procedures, disease entities, and seizure outcomes.

Thirteen patients underwent MEGSSs: nine had clusters; two had small clusters, one with and one without clusters; and three had scatters alone. All 13 had scatters. Clusters localized within and extended from areas of cortical dysplasia and at margins of tumors or cystic lesions. All clusters were colocalized to ECoG-defined epileptic zones. Four of six patients with clusters and/or small clusters underwent complete excisions, and two underwent partial excision with or without multiple subpial transections. In the three patients with scatters alone, ECoG revealed epileptic zones buried within MEGSS areas; these regions of scatters were completely excised and treated with multiple subpial transections. Coexisting scatters were left untreated in nine of 10 patients. Postoperatively, nine of 13 patients were seizure free; the four patients with residual seizures had clusters in unresected eloquent cortex. Three patients in whom no MEGSSs were demonstrated underwent lesionectomies and were seizure free.

Conclusions. Magnetoencephalography spike source clusters indicate an epileptic zone requiring complete excision. Coexisting scatters remote from clusters are nonepileptogenic and do not require excision. Scatters alone, however, should be examined by ECoG; an epileptic zone may exist within these distributions.