Search Results

You are looking at 1 - 10 of 21 items for

  • Author or Editor: Arjun Sahgal x
Clear All Modify Search
Free access

Paul M. Arnold

Free access

Veronica L. Chiang, Samuel T. Chao, Constantin Tuleasca, Matthew C. Foote, Cheng-chia Lee, David Mathieu, Hany Soliman and Arjun Sahgal

In order to determine what areas of research are a clinical priority, a small group of young Gamma Knife investigators was invited to attend a workshop discussion at the 19th International Leksell Gamma Knife Society Meeting. Two areas of interest and the need for future radiosurgical research involving multiple institutions were identified by the young investigators working group: 1) the development of additional imaging sequences to guide the understanding, treatment, and outcome tracking of diseases such as tremor, radiation necrosis, and AVM; and 2) trials to clarify the role of hypofractionation versus single-fraction radiosurgery in the treatment of large lesions such as brain metastases, postoperative cavities, and meningiomas.

Restricted access

Juan Pablo Cruz, Arjun Sahgal, Cari Whyne, Michael G. Fehlings and Roger Smith

Balloon kyphoplasty (BKP) has been proven to be safe and effective in the management of pathological vertebral compression fracture (VCF) due to metastatic spinal disease. The most common serious complications related to BKP include cement extravasation and new fractures at adjacent levels. Although the potential for “tumor extravasation” has been discussed as a potential iatrogenic complication, it has yet to be confirmed. The authors report on 2 cases of tumor extravasation following BKP, which they base on an observed unusual rapid tumor spread pattern into the adjacent tissues. They postulate that by increasing the vertebral body internal pressure and disrupting the tissues during balloon inflation and cement application, a soft-tissue tumor can be forced beyond the vertebral bony boundaries through pathological cortical defects. This phenomenon can manifest radiologically as subligamentous spread and/or extension into venous sinusoids, resulting in epidural venous plexus involvement, with subsequent tumor migration into the adjacent vertebral segments. Accordingly, the authors advise caution in using BKP when significant epidural tumor is present. The complication they encountered has caused them to modify their preference such that they now first use radiosurgery and subsequently BKP to ensure the target is appropriately treated, and they are currently developing possible modifications of procedural technique to reduce the risk.

Full access

Maha Saada Jawad, Daniel K. Fahim, Peter C. Gerszten, John C. Flickinger, Arjun Sahgal, Inga S. Grills, Jason Sheehan, Ronald Kersh, John Shin, Kevin Oh, Frederick Mantel and Matthias Guckenberger

OBJECTIVE

The purpose of this study was to identify factors contributing to an increased risk for vertebral compression fracture (VCF) following stereotactic body radiation therapy (SBRT) for spinal tumors.

METHODS

A total of 594 tumors were treated with spinal SBRT as primary treatment or re-irradiation at 8 different institutions as part of a multi-institutional research consortium. Patients underwent LINAC-based, image-guided SBRT to a median dose of 20 Gy (range 8–40 Gy) in a median of 1 fraction (range 1–5 fractions). Median patient age was 62 years. Seventy-one percent of tumors were osteolytic, and a preexisting vertebral compression fracture (VCF) was present in 24% of cases. Toxicity was assessed following treatment. Univariate and multivariate analyses were performed using a logistic regression method to determine parameters predictive for post-SBRT VCF.

RESULTS

At a median follow-up of 10.1 months (range 0.03–57 months), 80% of patients had local tumor control. At the time of last imaging follow-up, at a median of 8.8 months after SBRT, 3% had a new VCF, and 2.7% had a progressive VCF. For development of any (new or progressive) VCF following SBRT, the following factors were predictive for VCF on univariate analysis: short interval from primary diagnosis to SBRT (less than 36.8 days), solitary metastasis, no additional bone metastases, no prior chemotherapy, preexisting VCF, no MRI used for target delineation, tumor volume of 37.3 cm3 or larger, equivalent 2-Gy-dose (EQD2) tumor of 41.8 Gy or more, and EQD2 spinal cord Dmax of 46.1 Gy or more. Preexisting VCF, solitary metastasis, and prescription dose of 38.4 Gy or more were predictive on multivariate analysis. The following factors were predictive of a new VCF on univariate analysis: solitary metastasis, no additional bone metastases, and no MRI used for target delineation. Presence of a solitary metastasis and lack of MRI for target delineation remained significant on multivariate analysis.

CONCLUSIONS

A VCF following SBRT is more likely to occur following treatment for a solitary spinal metastasis, reflecting a more aggressive treatment approach in patients with adequately controlled systemic disease. Higher prescription dose and a preexisting VCF also put patients at increased risk for post-SBRT VCF. In these patients, pre-SBRT cement augmentation could be considered to decrease the risk of subsequent VCF.

Free access

Ameen Al-Omair, Roger Smith, Tim-Rasmus Kiehl, Louis Lao, Eugene Yu, Eric M. Massicotte, Julia Keith, Michael G. Fehlings and Arjun Sahgal

Spine stereotactic radiosurgery (SRS) is increasingly being used to treat metastatic spinal tumors. As the experience matures, high rates of vertebral compression fracture (VCF) are being observed. What is unknown is the mechanism of action; it has been postulated but not confirmed that radiation itself is a contributing factor. This case report describes 2 patients who were treated with spine SRS who subsequently developed signal changes on MRI consistent with tumor progression and VCF; however, biopsy confirmed a diagnosis of radiation-induced necrosis in 1 patient and fibrosis in the other. Radionecrosis is a rare and serious side effect of high-dose radiation therapy and represents a diagnostic challenge, as the authors have learned from years of experience with brain SRS. These cases highlight the issues in the new era of spine SRS with respect to relying on imaging alone as a means of determining true tumor progression. In those scenarios in which it is unclear based on imaging if true tumor progression has occurred, the authors recommend biopsy to rule out radiation-induced effects within the bone prior to initiating salvage therapies.

Full access

Stereotactic radiosurgery for tremor: systematic review

International Stereotactic Radiosurgery Society practice guidelines

Nuria E. Martínez-Moreno, Arjun Sahgal, Antonio De Salles, Motohiro Hayashi, Marc Levivier, Lijun Ma, Ian Paddick, Jean Régis, Sam Ryu, Ben J. Slotman and Roberto Martínez-Álvarez

OBJECTIVE

The aim of this systematic review is to offer an objective summary of the published literature relating to stereotactic radiosurgery (SRS) for tremor and consensus guideline recommendations.

METHODS

This systematic review was performed up to December 2016. Article selection was performed by searching the MEDLINE (PubMed) and EMBASE electronic bibliographic databases. The following key words were used: “radiosurgery” and “tremor” or “Parkinson’s disease” or “multiple sclerosis” or “essential tremor” or “thalamotomy” or “pallidotomy.” The search strategy was not limited by study design but only included key words in the English language, so at least the abstract had to be in English.

RESULTS

A total of 34 full-text articles were included in the analysis. Three studies were prospective studies, 1 was a retrospective comparative study, and the remaining 30 were retrospective studies. The one retrospective comparative study evaluating deep brain stimulation (DBS), radiofrequency thermocoagulation (RFT), and SRS reported similar tremor control rates, more permanent complications after DBS and RFT, more recurrence after RFT, and a longer latency period to clinical response with SRS. Similar tremor reduction rates in most of the reports were observed with SRS thalamotomy (mean 88%). Clinical complications were rare and usually not permanent (range 0%–100%, mean 17%, median 2%). Follow-up in general was too short to confirm long-term results.

CONCLUSIONS

SRS to the unilateral thalamic ventral intermediate nucleus, with a dose of 130–150 Gy, is a well-tolerated and effective treatment for reducing medically refractory tremor, and one that is recommended by the International Stereotactic Radiosurgery Society.

Full access

Stereotactic radiosurgery for trigeminal neuralgia: a systematic review

International Stereotactic Radiosurgery Society practice guidelines

Constantin Tuleasca, Jean Régis, Arjun Sahgal, Antonio De Salles, Motohiro Hayashi, Lijun Ma, Roberto Martínez-Álvarez, Ian Paddick, Samuel Ryu, Ben J. Slotman and Marc Levivier

OBJECTIVES

The aims of this systematic review are to provide an objective summary of the published literature specific to the treatment of classical trigeminal neuralgia with stereotactic radiosurgery (RS) and to develop consensus guideline recommendations for the use of RS, as endorsed by the International Society of Stereotactic Radiosurgery (ISRS).

METHODS

The authors performed a systematic review of the English-language literature from 1951 up to December 2015 using the Embase, PubMed, and MEDLINE databases. The following MeSH terms were used in a title and abstract screening: “radiosurgery” AND “trigeminal.” Of the 585 initial results obtained, the authors performed a full text screening of 185 studies and ultimately found 65 eligible studies. Guideline recommendations were based on level of evidence and level of consensus, the latter predefined as at least 85% agreement among the ISRS guideline committee members.

RESULTS

The results for 65 studies (6461 patients) are reported: 45 Gamma Knife RS (GKS) studies (5687 patients [88%]), 11 linear accelerator (LINAC) RS studies (511 patients [8%]), and 9 CyberKnife RS (CKR) studies (263 patients [4%]). With the exception of one prospective study, all studies were retrospective.

The mean maximal doses were 71.1–90.1 Gy (prescribed at the 100% isodose line) for GKS, 83.3 Gy for LINAC, and 64.3–80.5 Gy for CKR (the latter two prescribed at the 80% or 90% isodose lines, respectively). The ranges of maximal doses were as follows: 60–97 Gy for GKS, 50–90 Gy for LINAC, and 66–90 Gy for CKR.

Actuarial initial freedom from pain (FFP) without medication ranged from 28.6% to 100% (mean 53.1%, median 52.1%) for GKS, from 17.3% to 76% (mean 49.3%, median 43.2%) for LINAC, and from 40% to 72% (mean 56.3%, median 58%) for CKR. Specific to hypesthesia, the crude rates (all Barrow Neurological Institute Pain Intensity Scale scores included) ranged from 0% to 68.8% (mean 21.7%, median 19%) for GKS, from 11.4% to 49.7% (mean 27.6%, median 28.5%) for LINAC, and from 11.8% to 51.2% (mean 29.1%, median 18.7%) for CKR. Other complications included dysesthesias, paresthesias, dry eye, deafferentation pain, and keratitis. Hypesthesia and paresthesia occurred as complications only when the anterior retrogasserian portion of the trigeminal nerve was targeted, whereas the other listed complications occurred when the root entry zone was targeted. Recurrence rates ranged from 0% to 52.2% (mean 24.6%, median 23%) for GKS, from 19% to 63% (mean 32.2%, median 29%) for LINAC, and from 15.8% to 33% (mean 25.8%, median 27.2%) for CKR. Two GKS series reported 30% and 45.3% of patients who were pain free without medication at 10 years.

CONCLUSIONS

The literature is limited in its level of evidence, with only one comparative randomized trial (1 vs 2 isocenters) reported to date. At present, one can conclude that RS is a safe and effective therapy for drug-resistant trigeminal neuralgia. A number of consensus statements have been made and endorsed by the ISRS.

Full access

Stereotactic body radiotherapy for de novo spinal metastases: systematic review

International Stereotactic Radiosurgery Society practice guidelines

Zain A. Husain, Arjun Sahgal, Antonio De Salles, Melissa Funaro, Janis Glover, Motohiro Hayashi, Masahiro Hiraoka, Marc Levivier, Lijun Ma, Roberto Martínez-Alvarez, J. Ian Paddick, Jean Régis, Ben J. Slotman and Samuel Ryu

OBJECTIVE

The aim of this systematic review was to provide an objective summary of the published literature pertaining to the use of stereotactic body radiation therapy (SBRT) specific to previously untreated spinal metastases.

METHODS

The authors performed a systematic review, using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, of the literature found in a search of Medline, PubMed, Embase, and the Cochrane Library up to March 2015. The search strategy was limited to publications in the English language.

RESULTS

A total of 14 full-text articles were included in the analysis. All studies were retrospective except for 2 studies, which were prospective. A total of 1024 treated spinal lesions were analyzed. The median follow-up time ranged from 9 to 49 months. A range of dose-fractionation schemes was used, the most common of which were 16–24 Gy/1 fraction (fx), 24 Gy/2 fx, 24–27 Gy/3 fx, and 30–35 Gy/5 fx. In studies that reported crude results regarding in-field local tumor control, 346 (85%) of 407 lesions remained controlled. For studies that reported actuarial values, the weighted average revealed a 90% 1-year local control rate. Only 3 studies reported data on complete pain response, and the weighted average of these results yielded a complete pain response rate of 54%. The most common toxicity was new or progressing vertebral compression fracture, which was observed in 9.4% of cases; 2 cases (0.2%) of neurologic injury were reported.

CONCLUSION

There is a paucity of prospective data specific to SBRT in patients with spinal metastases not otherwise irradiated. This systematic review found that SBRT is associated with favorable rates of local control (approximately 90% at 1 year) and complete pain response (approximately 50%), and low rates of serious adverse events were found. Practice guidelines are summarized based on these data and International Stereotactic Radiosurgery Society consensus.

Full access

Reirradiation spine stereotactic body radiation therapy for spinal metastases: systematic review

International Stereotactic Radiosurgery Society practice guidelines

Sten Myrehaug, Arjun Sahgal, Motohiro Hayashi, Marc Levivier, Lijun Ma, Roberto Martinez, Ian Paddick, Jean Régis, Samuel Ryu, Ben Slotman and Antonio De Salles

OBJECTIVE

Spinal metastases that recur after conventional palliative radiotherapy have historically been difficult to manage due to concerns of spinal cord toxicity in the retreatment setting. Spine stereotactic body radiation therapy (SBRT), also known as stereotactic radiosurgery, is emerging as an effective and safe means of delivering ablative doses to these recurrent tumors. The authors performed a systematic review of the literature to determine the clinical efficacy and safety of spine SBRT specific to previously irradiated spinal metastases.

METHODS

A systematic literature review was conducted, which was specific to SBRT to the spine, using MEDLINE, Embase, Cochrane Evidence-Based Medicine Database, National Guideline Clearinghouse, and CMA Infobase, with further bibliographic review of appropriate articles. Research questions included: 1) Is retreatment spine SBRT efficacious with respect to local control and symptom control? 2) Is retreatment spine SBRT safe?

RESULTS

The initial literature search retrieved 2263 articles. Of these articles, 160 were potentially relevant, 105 were selected for in-depth review, and 9 studies met all inclusion criteria for analysis. All studies were single-institution series, including 4 retrospective, 3 retrospective series of prospective databases, 1 prospective, and 1 Phase I/II prospective study (low- or very low–quality data). The results indicated that spine SBRT is effective, with a median 1-year local control rate of 76% (range 66%–90%). Improvement in patients’ pain scores post-SBRT ranged from 65% to 81%. Treatment delivery was safe, with crude rates of vertebral body fracture of 12% (range 0%–22%) and radiation-induced myelopathy of 1.2%.

CONCLUSIONS

This systematic literature review suggests that SBRT to previously irradiated spinal metastases is safe and effective with respect to both local control and pain relief. Although the evidence is limited to low-quality data, SBRT can be a recommended treatment option for reirradiation.

Full access

Michael W. Chan, Isabelle Thibault, Eshetu G. Atenafu, Eugene Yu, B. C. John Cho, Daniel Letourneau, Young Lee, Albert Yee, Michael G. Fehlings and Arjun Sahgal

OBJECT

The authors performed a pattern-of-failure analysis, with a focus on epidural disease progression, in patients treated with postoperative spine stereotactic body radiotherapy (SBRT).

METHODS

Of the 70 patients with 75 spinal metastases (cases) treated with postoperative spine SBRT, there were 26 cases of local disease recurrence and 25 cases with a component of epidural disease progression. Twenty-four of the 25 cases had preoperative epidural disease with subsequent epidural disease progression, and this cohort was the focus of this epidural-specific pattern-of-failure investigation. Preoperative, postoperative, and follow-up MRI scans were reviewed, and epidural disease was characterized based on location according to a system in which the vertebral anatomy is divided into 6 sectors, with the anterior compartment comprising Sectors 1, 2, and 6, and the posterior compartment comprising Sectors 3, 4, and 5.

RESULTS

Patterns of epidural progression are reported specifically for the 24 cases with preoperative epidural disease and subsequent epidural progression. Epidural disease progression within the posterior compartment was observed to be significantly lower in those with preoperative epidural disease confined to the anterior compartment than in those with preoperative epidural disease involving both anterior and posterior compartments (56% vs 93%, respectively; p = 0.047). In a high proportion of patients with epidural disease progression, treatment failure was found in the anterior compartment, including both those with preoperative epidural disease confined to the anterior compartment and those with preoperative epidural disease involving both anterior and posterior compartments (100% vs. 73%, respectively). When epidural disease was confined to the anterior compartment on the preoperative and postoperative MRIs, no epidural disease progression was observed in Sector 4, which is the most posterior sector. Postoperative epidural disease characteristics alone were not predictive of the pattern of epidural treatment failure.

CONCLUSIONS

Reviewing the extent of epidural disease on preoperative MRI is imperative when planning postoperative SBRT. When epidural disease is confined to the anterior epidural sectors pre- and postoperatively, covering the entire epidural space circumferentially with a prophylactic “donut” distribution may not be needed.