Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Aren Joe Bizdikian x
Clear All Modify Search
Restricted access

Ziad Bakouny, Nour Khalil, Joeffroy Otayek, Aren Joe Bizdikian, Fares Yared, Michel Salameh, Naji Bou Zeid, Ismat Ghanem, Khalil Kharrat, Gaby Kreichati, Renaud Lafage, Virginie Lafage and Ayman Assi

OBJECTIVE

The Ames–International Spine Study Group (ISSG) classification has recently been proposed as a tool for adult cervical deformity evaluation. This classification includes three radiographic cervical sagittal modifiers that have not been evaluated in asymptomatic adults. The aim of this study was to determine whether the sagittal radiographic modifiers described in the Ames-ISSG cervical classification are encountered in asymptomatic adults without alteration of health-related quality of life (HRQOL).

METHODS

The authors conducted a cross-sectional study of subjects with an age ≥ 18 years and no cervical or back-related complaints or history of orthopedic surgery. All subjects underwent full-body biplanar radiographs with the measurement of cervical, segmental, and global alignment and completed the SF-36 HRQOL questionnaire. Subjects were classified according to the sagittal radiographic modifiers (chin-brow vertical angle [CBVA], mismatch between T1 slope and cervical lordosis [TS-CL], and C2–7 sagittal vertical axis [cSVA]) of the Ames–ISSG classification for cervical deformity, which also includes a qualitative descriptor of cervical deformity, the modified Japanese Orthopaedic Association (mJOA) myelopathy score, and the Scoliosis Research Society (SRS)–Schwab classification for spinal deformity assessment. Characteristics of the subjects classified by the different modifier grades were compared.

RESULTS

One hundred forty-one asymptomatic subjects (ages 18–59 years, 71 females) were enrolled in the study. Twenty-seven (19.1%) and 61 (43.3%) subjects were classified as grade 1 in terms of the TS-CL and CBVA modifiers, respectively. Ninety-eight (69.5%) and 4 (2.8%) were grade 2 for these same respective modifiers. One hundred thirty-six (96.5%) subjects had at least one modifier at grade 1 or 2. There was a significant relationship between patient age and grades of TS-CL (p < 0.001, Cramer’s V [CV] = 0.32) and CBVA (p = 0.04, CV = 0.22) modifiers. The HRQOL, global alignment, and segmental alignment parameters were similar among the subjects with different modifier grades (p > 0.05).

CONCLUSIONS

The CBVA and TS-CL radiographic modifiers of the Ames-ISSG classification do not seem to be specific to subjects with cervical deformities and can occur in asymptomatic subjects without alteration in HRQOL.

Restricted access

Chris Labaki, Joeffroy Otayek, Abir Massaad, Ziad Bakouny, Mohammad Karam, Cyril Hanna, Anthony Kassab, Aren Joe Bizdikian, Georges Mjaess, Aya Karam, Wafa Skalli, Ismat Ghanem and Ayman Assi

OBJECTIVE

The aim of this study was to determine if the apical vertebra (AV) in patients with adolescent idiopathic scoliosis (AIS) is the most rotated vertebra in the scoliotic segment.

METHODS

A total of 158 patients with AIS (Cobb angle range 20°–101°) underwent biplanar radiography with 3D reconstructions of the spine and calculation of vertebral axial rotations. The type of major curvature was recorded (thoracic, thoracolumbar, or lumbar), and both major and minor curvatures were included. The difference of levels (DL) between the level of maximal vertebral rotation (LMVR) and the AV was calculated as follows: DL = 0 if LMVR and AV were the same, DL = 1 if LMVR was directly above or below the AV, and DL = 2 if LMVR was separated by 1 vertebra or more from the AV. To investigate which factors explained the divergence of the LMVR from the AV, multinomial models were computed.

RESULTS

The distribution of the DL was as follows: for major curvatures, 143 were DL = 0, 11 were DL = 1, and 4 were DL = 2; and for minor curvatures, 53 were DL = 0, 9 were DL = 1, and 31 were DL = 2. The determinants of a DL = 2 (compared with DL = 0) were lumbar curvature (compared with thoracic; adjusted OR 0.094, p = 0.001), major curvature (compared with minor; adjusted OR 0.116, p = 0.001), and curvatures with increasing apical vertebral rotation (adjusted OR 0.788, p < 0.001).

CONCLUSIONS

This study showed that the AV is the most rotated vertebra in the majority of major curvatures, while in minor curvatures, the most rotated vertebra appears to be the junctional vertebra between major and minor curvatures in a significant proportion of cases.