Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Anudeep Yekula x
  • All content x
Clear All Modify Search
Free access

Mihir Gupta, Tiffany M. Chan, David R. Santiago-Dieppa, Anudeep Yekula, Carlos E. Sanchez, Jennifer D. Elster, John R. Crawford, Michael L. Levy, and David D. Gonda

OBJECTIVE

Biopsies of tumors located in deep midline structures require highly accurate stereotaxy to safely obtain lesional tissue suitable for molecular and histological analysis. Versatile platforms are needed to meet a broad range of technical requirements and surgeon preferences. The authors present their institutional experience with the robotic stereotactic assistance (ROSA) system in a series of robot-assisted biopsies of pediatric brainstem and thalamic tumors.

METHODS

A retrospective analysis was performed of 22 consecutive patients who underwent 23 stereotactic biopsies of brainstem or thalamic lesions using the ROSA platform at Rady Children’s Hospital in San Diego between December 2015 and January 2020.

RESULTS

The ROSA platform enabled rapid acquisition of lesional tissue across various combinations of approaches, registration techniques, and positioning. No permanent deficits, major adverse outcomes, or deaths were encountered. One patient experienced temporary cranial neuropathy, and 3 developed small asymptomatic hematomas. The diagnostic success rate of the ROSA system was 91.3%.

CONCLUSIONS

Robot-assisted stereotactic biopsy of these lesions may be safely performed using the ROSA platform. This experience comprises the largest clinical series to date dedicated to robot-assisted biopsies of brainstem and diencephalic tumors.

Restricted access

Mihir Gupta, Tiffany M. Chan, David R. Santiago-Dieppa, Anudeep Yekula, Carlos E. Sanchez, Jennifer D. Elster, John R. Crawford, Michael L. Levy, and David D. Gonda

OBJECTIVE

Biopsies of tumors located in deep midline structures require highly accurate stereotaxy to safely obtain lesional tissue suitable for molecular and histological analysis. Versatile platforms are needed to meet a broad range of technical requirements and surgeon preferences. The authors present their institutional experience with the robotic stereotactic assistance (ROSA) system in a series of robot-assisted biopsies of pediatric brainstem and thalamic tumors.

METHODS

A retrospective analysis was performed of 22 consecutive patients who underwent 23 stereotactic biopsies of brainstem or thalamic lesions using the ROSA platform at Rady Children’s Hospital in San Diego between December 2015 and January 2020.

RESULTS

The ROSA platform enabled rapid acquisition of lesional tissue across various combinations of approaches, registration techniques, and positioning. No permanent deficits, major adverse outcomes, or deaths were encountered. One patient experienced temporary cranial neuropathy, and 3 developed small asymptomatic hematomas. The diagnostic success rate of the ROSA system was 91.3%.

CONCLUSIONS

Robot-assisted stereotactic biopsy of these lesions may be safely performed using the ROSA platform. This experience comprises the largest clinical series to date dedicated to robot-assisted biopsies of brainstem and diencephalic tumors.

Restricted access

Mihir Gupta, Varun Sagi, Aditya Mittal, Anudeep Yekula, Devan Hawkins, Justin Shimizu, Pate J. Duddleston, Kathleen Thomas, Steven J. Goetsch, John F. Alksne, David W. Hodgens, Kenneth Ott, Kenneth T. Shimizu, Christopher Duma, and Sharona Ben-Haim

OBJECTIVE

Gamma Knife radiosurgery (GKRS) is an established surgical option for the treatment of trigeminal neuralgia (TN), particularly for high-risk surgical candidates and those with recurrent pain. However, outcomes after three or more GKRS treatments have rarely been reported. Herein, the authors reviewed outcomes among patients who had undergone three or more GKRS procedures for recurrent TN.

METHODS

The authors conducted a multicenter retrospective analysis of patients who had undergone at least three GKRS treatments for TN between July 1997 and April 2019 at two different institutions. Clinical characteristics, radiosurgical dosimetry and technique, pain outcomes, and complications were reviewed. Pain outcomes were scored on the Barrow Neurological Institute (BNI) scale, including time to pain relief (BNI score ≤ III) and recurrence (BNI score > III).

RESULTS

A total of 30 patients were identified, including 16 women and 14 men. Median pain duration prior to the first GKRS treatment was 10 years. Three patients (10%) had multiple sclerosis. Time to pain relief was longer after the third treatment (p = 0.0003), whereas time to pain recurrence was similar across each of the successive treatments (p = 0.842). Complete or partial pain relief was achieved in 93.1% of patients after the third treatment. The maximum pain relief achieved after the third treatment was significantly better among patients with no prior percutaneous procedures (p = 0.0111) and patients with shorter durations of pain before initiation of GKRS therapy (p = 0.0449). New or progressive facial sensory dysfunction occurred in 29% of patients after the third GKRS treatment and was reported as bothersome in 14%. One patient developed facial twitching, while another experienced persistent lacrimation. No statistically significant predictors of adverse effects following the third treatment were found. Over a median of 39 months of follow-up, 77% of patients maintained complete or partial pain relief. Three patients underwent a fourth GKRS treatment, including one who ultimately received five treatments; all of them reported sustained pain relief at the extended follow-up.

CONCLUSIONS

The authors describe the largest series to date of patients undergoing three or more GKRS treatments for refractory TN. A third treatment may produce outcomes similar to those of the first two treatments in terms of long-term pain relief, recurrence, and adverse effects.